A. J. Cole et al. (May 2025)
Nature Communications 16
A chimeric viral platform for directed evolution in mammalian cells
Directed evolution is a process of mutation and artificial selection to breed biomolecules with new or improved activity. Directed evolution platforms are primarily prokaryotic or yeast-based,and stable mammalian systems have been challenging to establish and apply. To this end,we develop PROTein Evolution Using Selection (PROTEUS),a platform that uses chimeric virus-like vesicles to enable extended mammalian directed evolution campaigns without loss of system integrity. This platform is stable and can generate sufficient diversity for directed evolution in mammalian systems. Using PROTEUS,we alter the doxycycline responsiveness of tetracycline-controlled transactivators,generating a more sensitive TetON-4G tool for gene regulation with mammalian-specific adaptations. PROTEUS is also compatible with intracellular nanobody evolution,and we use it to evolve a DNA damage-responsive anti-p53 nanobody. Overall,PROTEUS is an efficient and stable platform to direct evolution of biomolecules within mammalian cells. Subject terms: Synthetic biology,Synthetic biology,Molecular evolution,Next-generation sequencing
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Chute JP et al. (AUG 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 31 11707--12
Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells.
Aldehyde dehydrogenase (ALDH) is an enzyme that is expressed in the liver and is required for the conversion of retinol (vitamin A) to retinoic acids. ALDH is also highly enriched in hematopoietic stem cells (HSCs) and is considered a selectable marker of human HSCs,although its contribution to stem cell fate remains unknown. In this study,we demonstrate that ALDH is a key regulator of HSC differentiation. Inhibition of ALDH with diethylaminobenzaldehyde (DEAB) delayed the differentiation of human HSCs that otherwise occurred in response to cytokines. Moreover,short-term culture with DEAB caused a 3.4-fold expansion in the most primitive assayable human cells,the nonobese diabetic/severe combined immunodeficiency mouse repopulating cells,compared with day 0 CD34(+)CD38(-)lin(-) cells. The effects of DEAB on HSC differentiation could be reversed by the coadministration of the retinoic acid receptor agonist,all-trans-retinoic acid,suggesting that the ability of ALDH to generate retinoic acids is important in determining HSC fate. DEAB treatment also caused a decrease in retinoic acid receptor-mediated signaling within human HSCs,suggesting directly that inhibition of ALDH promotes HSC self-renewal via reduction of retinoic acid activity. Modulation of ALDH activity and retinoid signaling is a previously unrecognized and effective strategy to amplify human HSCs.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Hess DA et al. (SEP 2004)
Blood 104 6 1648--55
Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity.
Human hematopoietic stem cells (HSCs) are commonly purified by the expression of cell surface markers such as CD34. Because cell phenotype can be altered by cell cycle progression or ex vivo culture,purification on the basis of conserved stem cell function may represent a more reliable way to isolate various stem cell populations. We have purified primitive HSCs from human umbilical cord blood (UCB) by lineage depletion (Lin(-)) followed by selection of cells with high aldehyde dehydrogenase (ALDH) activity. ALDH(hi)Lin(-) cells contained 22.6% +/- 3.0% of the Lin(-) population and highly coexpressed primitive HSC phenotypes (CD34(+) CD38(-) and CD34(+)CD133(+)). In vitro hematopoietic progenitor function was enriched in the ALDH(hi)Lin(-) population,compared with ALDH(lo)Lin(-) cells. Multilineage human hematopoietic repopulation was observed exclusively after transplantation of ALDH(hi)Lin(-) cells. Direct comparison of repopulation with use of the nonobese diabetic/severe combined immunodeficient (NOD/SCID) and NOD/SCID beta2 microglobulin (beta2M) null models demonstrated that 10-fold greater numbers of ALDH(hi)-Lin(-) cells were needed to engraft the NOD/SCID mouse as compared with the more permissive NOD/SCID beta2M null mouse,suggesting that the ALDH(hi)Lin(-) population contained committed progenitors as well as primitive repopulating cells. Cell fractionation according to lineage depletion and ALDH activity provides a viable and prospective purification of HSCs on the basis of cell function rather than cell surface phenotype.
View Publication
产品类型:
产品号#:
01700
01705
04434
04444
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
MethoCult™H4434经典
MethoCult™H4434经典
Giebel B et al. (OCT 2004)
Blood 104 8 2332--8
Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells.
During ontogenesis and the entire adult life hematopoietic stem and progenitor cells have the capability to migrate. In comparison to the process of peripheral leukocyte migration in inflammatory responses,the molecular and cellular mechanisms governing the migration of these cells remain poorly understood. A common feature of migrating cells is that they need to become polarized before they migrate. Here we have investigated the issue of cell polarity of hematopoietic stem/progenitor cells in detail. We found that human CD34(+) hematopoietic cells (1) acquire a polarized cell shape upon cultivation,with the formation of a leading edge at the front pole and a uropod at the rear pole; (2) exhibit an amoeboid movement,which is similar to the one described for migrating peripheral leukocytes; and (3) redistribute several lipid raft markers including cholesterol-binding protein prominin-1 (CD133) in specialized plasma membrane domains. Furthermore,polarization of CD34(+) cells is stimulated by early acting cytokines and requires the activity of phosphoinositol-3-kinase as previously reported for peripheral leukocyte polarization. Together,our data reveal a strong correlation between polarization and migration of peripheral leukocytes and hematopoietic stem/progenitor cells and suggest that they are governed by similar mechanisms.
View Publication
产品类型:
产品号#:
05150
09850
产品名:
MyeloCult™H5100
Armstrong L et al. (JAN 2004)
Stem cells (Dayton,Ohio) 22 7 1142--51
Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity.
There are several different technical approaches to the isolation of hematopoietic stem cells (HSCs) with long-term repopulating ability,but these have problems in terms of yield,complexity,or cell viability. Simpler strategies for HSC isolation are needed. We have enriched primitive hematopoietic progenitors from murine bone marrow of mice from different genetic backgrounds by lineage depletion followed by selection of cells with high aldehyde dehydrogenase activity using the Aldefluor reagent (BD Biosciences,Oxford,U.K.). Lin- ALDH(bright) cells comprised 26.8 +/- 1.0% of the total Lin- population of C57BL6 mice,and 23.5 +/- 1.0% of the Lin- population of BALB/c mice expressed certain cell-surface markers typical of primitive hematopoietic progenitors. In vitro hematopoietic progenitor function was substantially higher in the Lin- ALDH(bright) population compared with the Lin- ALDH(low) cells. These cells have higher telomerase activity and the lowest percentage of cells in S phase. These data strongly suggest that progenitor enrichment from Lin- cells on the basis of ALDH is a valid method whose simplicity of application makes it advantageous over conventional separations.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Moreau-Gaudry F et al. (NOV 2001)
Blood 98 9 2664--72
High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors.
Use of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors,genetic instability,and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34(+) cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/beta-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34(+) cells. Sca1(+)/lineage(-) Ly5.1 mouse hematopoietic cells,transduced with these 2 ankyrin-1 promoter vectors,were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation,high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment),compared with negligible expression in myeloid and lymphoid lineages in blood,BM,spleen,and thymus (0%-4%). The I8/HS-40-containing vector encoding a hybrid human beta/gamma-globin gene led to 43% to 113% human gamma-globin expression/copy of the mouse alpha-globin gene. Thus,modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer,stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.
View Publication
产品类型:
产品号#:
产品名:
Murdoch B et al. (MAR 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 6 3422--7
Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo.
Human hematopoietic stem cells are defined by their ability to repopulate multiple hematopoietic lineages in the bone marrow of transplanted recipients and therefore are functionally distinct from hematopoietic progenitors detected in vitro. Although factors capable of regulating progenitors are well established,in vivo regulators of hematopoietic repopulating function are unknown. By using a member of the vertebrate Wnt family,Wnt-5A,the proliferation and differentiation of progenitors cocultured on stromal cells transduced with Wnt-5A or treated with Wnt-5A conditioned medium (CM) was unaffected. However,i.p. injection of Wnt-5A CM into mice engrafted with human repopulating cells increased multilineage reconstitution by textgreater3-fold compared with controls. Furthermore,in vivo treatment of human repopulating cells with Wnt-5A CM produced a greater proportion of phenotypically primitive hematopoietic progeny that could be isolated and shown to possess enhanced progenitor function independent of continued Wnt-5A treatment. Our study demonstrates that Wnt-5A augments primitive hematopoietic development in vivo and represents an in vivo regulator of hematopoietic stem cell function in the human. Based on these findings,we suggest a potential role for activation of Wnt signaling in managing patients exhibiting poor hematopoietic recovery shortly after stem cell transplantation.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
Petzer AL et al. (JUN 1996)
The Journal of experimental medicine 183 6 2551--8
Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin.
A high proportion of the CD34+CD38- cells in normal human marrow are defined as long-term culture-initiating cells (LTC-IC) because they can proliferate and differentiate when co-cultured with cytokine-producing stromal feeder layers. In contrast,very few CD34+CD38- cells will divide in cytokine-containing methylcellulose and thus are not classifiable as direct colony-forming cells (CFC),although most can proliferate in serum-free liquid cultures containing certain soluble cytokines. Analysis of the effects of 16 cytokines on CD34+CD38- cells in the latter type of culture showed that Flt3-ligand (FL),Steel factor (SF),and interleukin (IL)-3 were both necessary and sufficient to obtain an approximately 30-fold amplification of the input LTC-IC population within 10 d. As single factors,only FL and thrombopoietin (TPO) stimulated a net increase in LTC-IC within 10 d. Interestingly,a significantly increased proportion of the CFC produced from the TPO-amplified LTC-IC were erythroid. Increases in the number of directly detectable CFC of textgreater 500-fold were also obtainable within 10 d in serum-free cultures of CD34+CD38- cells. However,this required the presence of IL-6 and/or granulocyte/colony-stimulating factor and/or nerve growth factor beta in addition to FL,SF,and IL-3. Also,for this response,the most potent single-acting factor tested was IL-3,not FL. Identification of cytokine combinations that differentially stimulate primitive human hematopoietic cell self-renewal and lineage determination should facilitate analysis of the intracellular pathways that regulate these decisions as well as the development of improved ex vivo expansion and gene transfer protocols.
View Publication
产品类型:
产品号#:
05150
05350
09300
09500
09850
产品名:
MyeloCult™H5100
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
A. Moiani et al. (Jun 2024)
Nature Communications 15
Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here,we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro,both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model,transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease. Subject terms: Targeted gene repair,Sickle cell disease
View Publication
产品类型:
产品号#:
22001
22005
22006
22007
22008
22009
22011
22012
产品名:
STEMvision™ 人脐带血7-天CFU分析包
STEMvision™ 彩色人脐带血14-天CFU分析包
STEMvision™ 彩色人骨髓14-天CFU分析包
STEMvision™ 彩色人动员外周血14-天CFU分析包
STEMvision™ 小鼠总CFU分析包
STEMvision™ 小鼠髓系CFU分析包
STEMvision™ 小鼠红系CFU分析包
STEMvision™ 小鼠CFU分析包(髓系和红系)
Y. Li et al. (jan 2020)
Free radical biology {\&} medicine 146 211--221
Mitochondrial dysfunction and oxidative stress in bone marrow stromal cells induced by daunorubicin leads to DNA damage in hematopoietic cells.
Cytotoxic chemotherapies could cause the dysregulation of hematopoiesis and even put patients at increased risk of hematopoietic malignancy. Therapy-related leukemia is mainly caused by cytotoxic chemotherapy-induced genetic mutations in hematopoietic stem/progenitor cells (HSPCs). In addition to the intrinsic mechanism,some extrinsic events occurring in the bone marrow (BM) microenvironment are also possible mechanisms involved in genetic alteration. In the present study,we investigated the damage to BM stromal cells induced by a chemotherapy drug,daunorubicin (DNR) and further identified the DNA damage in hematopoietic cells caused by drug-treated stromal cells. It was found that treatment with DNR in mice caused a temporary reduction in cell number in each BM stromal cell subpopulation and the impairment of clonal growth potential in BM stromal cells. DNR treatment led to a tendency of senescence,generation of intracellular reactive oxygen species,production of cytokines and chemokines,and dysfunction of mitochondrial in stromal cells. Transcriptome microarray data and gene ontology (GO) or gene set enrichment analysis (GSEA) showed that differentially expressed genes that were down-regulated in response to DNR treatment were significantly enriched in mitochondrion function,and negative regulators of reactive oxygen species. Surprisingly,it was found that DNR-treated stromal cells secreted high levels of H2O2 into the culture supernatant. Furthermore,coculture of hematopoietic cells with DNR-treated stromal cells led to the accumulation of DNA damage as determined by the levels of histone H2AX phosphorylation and 8-oxo-2'-deoxyguanosine in hematopoietic cells. Overall,our results suggest that DNR-induced BM stromal cell damage can lead to genomic instability in hematopoietic cells.
View Publication
SummaryInterleukin-33 (IL-33) is an immunoregulatory cytokine that moderately suppresses experimental autoimmune encephalomyelitis (EAE),a murine model of multiple sclerosis (MS). However,poor pharmacokinetics and toxicity hinder its clinical translation. To address these limitations,we develop an activity-attenuated IL-33 by recombinant fusion to serum albumin (SA). SA-IL-33 exhibits reduced toxicity and prolonged residence in the secondary lymphoid organs (SLOs),sites of T cell priming in autoimmunity,compared to wild-type (WT) IL-33. Prophylactic SA-IL-33 administration prevents EAE with superior efficacy to WT IL-33 and comparable efficacy to fingolimod (FTY720),a Food and Drug Administration (FDA)-approved MS drug. Therapeutic SA-IL-33 treatment also reduces disease severity in both chronic and relapsing-remitting EAE. SA-IL-33 modulates immunity in EAE by suppressing CD45+ cell infiltration (including myelin-reactive T helper 17 [TH17] cells) in the spinal cord,while expanding type 2 immune cells (including type 2 innate lymphoid cells [ILC2s],ST2+ regulatory T cells [Tregs],T helper 2 [TH2] cells,and M2-polarized macrophages) in the SLOs. These findings suggest that SA-IL-33 is a promising therapeutic for neuroinflammatory diseases. Graphical abstract Highlights•Fusion of serum albumin (SA) to interleukin-33 (IL-33) attenuates its activity and toxicity•Engineered SA-IL-33 exhibits prolonged residence in the secondary lymphoid organs (SLOs)•SA-IL-33 treatment both prevents the onset of and reduces established neuroinflammation in mice•Cytokine therapy suppresses TH17 cells in the CNS and promotes immunoregulation in the SLOs The clinical utility of interleukin-33 is hindered by poor pharmacokinetics and toxicity. Budina et al. develop a fusion of serum albumin and interleukin-33 (SA-IL-33) with reduced toxicity and prolonged lymph node residence. SA-IL-33 prevents the onset of and suppresses established inflammation-mediated paralysis in mice,demonstrating promise as a therapeutic for neuroinflammatory diseases.
View Publication
Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.
The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells,but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall,we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay,the neural colony forming cell assay (N-CFCA),and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis,with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover,the greatest variability occurred in the rostral portion of the lateral ventricles,thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly,LRC numbers were significantly reduced (1186 +/- 188,7 month chase) in comparison to both total colonies and neurospheres. Moreover,approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+),and proliferate upon transfer to culture,it is unclear whether this technique selectively detects endogenous NSCs. Overall,caution should be taken with the interpretation and employment of all these techniques.
View Publication