Inhibition of angiotensin I-converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells.
Angiotensin I-converting enzyme (ACE) inhibitors can affect hematopoiesis by several mechanisms including inhibition of angiotensin II formation and increasing plasma concentrations of AcSDKP (acetyl-N-Ser-Asp-Lys-Pro),an ACE substrate and a negative regulator of hematopoiesis. We tested whether ACE inhibition could decrease the hematopoietic toxicity of lethal or sublethal irradiation protocols. In all cases,short treatment with the ACE inhibitor perindopril protected against irradiation-induced death. ACE inhibition accelerated hematopoietic recovery and led to a significant increase in platelet and red cell counts. Pretreatment with perindopril increased bone marrow cellularity and the number of hematopoietic progenitors (granulocyte macrophage colony-forming unit [CFU-GM],erythroid burst-forming unit [BFU-E],and megakaryocyte colony-forming unit [CFU-MK]) from day 7 to 28 after irradiation. Perindopril also increased the number of hematopoietic stem cells with at least a short-term reconstitutive activity in animals that recovered from irradiation. To determine the mechanism of action involved,we evaluated the effects of increasing AcSDKP plasma concentrations and of an angiotensin II type 1 (AT1) receptor antagonist (telmisartan) on radioprotection. We found that the AT1-receptor antagonism mediated similar radioprotection as the ACE inhibitor. These results suggest that ACE inhibitors and AT1-receptor antagonists could be used to decrease the hematopoietic toxicity of irradiation.
View Publication
产品类型:
产品号#:
03134
产品名:
MethoCult™M3134
Suzuki T et al. (NOV 2006)
Stem cells (Dayton,Ohio) 24 11 2456--65
Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein.
Ex vivo expansion of hematopoietic stem cells (HSCs) has been explored in the fields of stem cell biology,gene therapy,and clinical transplantation. Here,we demonstrate efficient ex vivo expansion of HSCs measured by long-term severe combined immunodeficient (SCID) repopulating cells (SRCs) from human cord blood CD133-sorted cells using a soluble form of Delta1. After a 3-week culture on immobilized Delta1 supplemented with stem cell factor,thrombopoietin,Flt-3 ligand,interleukin (IL)-3,and IL-6/soluble IL-6 receptor chimeric protein (FP6) in a serum- and stromal cell-free condition,we achieved approximately sixfold expansion of SRCs when evaluated by limiting dilution/transplantation assays. The maintenance of full multipotency and self-renewal capacity during culture was confirmed by transplantation to nonobese diabetic/SCID/gammac(null) mice,which showed myeloid,B,T,and natural killer cells as well as CD133(+)CD34(+) cells,and hematopoietic reconstitution in the secondary recipients. Interestingly,the CD133-sorted cells contained approximately 4.5 times more SRCs than the CD34-sorted cells. The present study provides a promising method to expand HSCs and encourages future trials on clinical transplantation.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Bhatia M et al. (AUG 1997)
The Journal of experimental medicine 186 4 619--24
Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture.
Ex vivo culture of human hematopoietic cells is a crucial component of many therapeutic applications. Although current culture conditions have been optimized using quantitative in vitro progenitor assays,knowledge of the conditions that permit maintenance of primitive human repopulating cells is lacking. We report that primitive human cells capable of repopulating nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice (SCID-repopulating cells; SRC) can be maintained and/or modestly increased after culture of CD34+CD38- cord blood cells in serum-free conditions. Quantitative analysis demonstrated a 4- and 10-fold increase in the number of CD34+CD38- cells and colony-forming cells,respectively,as well as a 2- to 4-fold increase in SRC after 4 d of culture. However,after 9 d of culture,all SRC were lost,despite further increases in total cells,CFC content,and CD34+ cells. These studies indicate that caution must be exercised in extending the duration of ex vivo cultures used for transplantation,and demonstrate the importance of the SRC assay in the development of culture conditions that support primitive cells.
View Publication
产品类型:
产品号#:
02690
02696
02697
09300
09500
09600
09650
09850
产品名:
StemSpan™CC100
StemSpan™巨核细胞扩增添加物 (100X)
StemSpan™CC110
含有10% 牛血清白蛋白(BSA)的 Iscove's MDM
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
M. R. Lidonnici et al. (Jul 2025)
Nature Communications 16
Imbalanced TGFβ signalling and autophagy drive erythroid priming of hematopoietic stem cells in β-thalassemia
The hematopoietic stem cell and multipotent progenitor (HSC/MPP) pool dynamically responds to stress to adapt blood output to specific physiological demands. In β-thalassemia (Bthal),severe anemia and ineffective erythropoiesis generate expansion of erythroid precursors and a chronic stress status in the bone marrow (BM) microenvironment. However,the response to the BM altered status at the level of the HSC/MPP compartment in terms of lineage commitment has not been investigated. Bulk and single-cell RNA-sequencing reveal that Bthal HSCs/MPPs are expanded and activated with enhanced priming along the whole Ery differentiation trajectory. Consistently,HSC/MPP showed an altered TGFβ expression and autophagy transcriptional signatures along with a declined dormancy state. We discovered that the altered TGFβ signaling fosters the Ery potential of HSCs by reducing their autophagic levels,and in vivo stimulation of autophagy is sufficient to rescue the imbalance of the HSC compartment. Our findings identify the interplay between TGFβ and HSC autophagy as a key driver in the context of non-malignant hematopoiesis. Subject terms: Haematopoietic stem cells,Haematological diseases,Autophagy
View Publication
Song B et al. (MAY 2015)
Stem cells and development 24 9 1053--1065
Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs),subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB),and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However,the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study,we used the latest gene-editing tool,clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9),to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then,we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation,gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly,the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system,and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
View Publication
产品类型:
产品号#:
04434
04444
05850
05857
05870
05875
85850
85857
85870
85875
05270
05275
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
mTeSR™1
mTeSR™1
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
Kandilci A and Grosveld GC (AUG 2009)
Blood 114 8 1596--606
Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation.
Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid-induced granulocytic differentiation. Here,we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34(+) hematopoietic cells,lineage-depleted mouse bone marrow cells,and bipotential (granulocytic/monocytic) human acute myeloid leukemia cell lines. We show that exogenous MN1 stimulated the growth of CD34(+) cells,which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and acute myeloid leukemia cell lines. Endogenous MN1 expression was higher in human CD34(+) cells compared with both primary and in vitro-differentiated monocytes and granulocytes. Microarray and real-time reverse-transcribed polymerase chain reaction analysis of MN1-overexpressing CD34(+) cells showed down-regulation of CEBPA and its downstream target genes. Reintroduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down-regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells.
View Publication
产品类型:
产品号#:
70002
70002.1
70002.2
70002.3
70002.4
70002.5
产品名:
(Jul 2025)
Nature Communications 16
EMP1 safeguards hematopoietic stem cells by suppressing sphingolipid metabolism and alleviating endoplasmic reticulum stress
The long-term maintenance of hematopoietic stem cells (HSCs) relies on the regulation of endoplasmic reticulum (ER) stress at a low level,but the underlying mechanism remains poorly understood. Here,we demonstrate that suppression of ER stress improves the functions of HSCs and protects HSCs against ionizing radiation (IR)-induced injury. We identify epithelial membrane protein 1 (EMP1) as a key regulator that mitigates ER stress in HSCs. Emp1 deficiency leads to the accumulation of protein aggregates and elevated ER stress,ultimately resulting in impaired HSC maintenance and self-renewal. Mechanistically,EMP1 is located within the ER and interacts with ceramide synthase 2 (CERS2) to limit the production of a class of sphingolipids,dihydroceramides (dhCers). DhCers accumulate in Emp1-deficient HSCs and induce protein aggregation. Furthermore,Emp1 deficiency renders HSCs more susceptible to IR,while overexpression of Emp1 or inhibition of CERS2 protects HSCs against IR-induced injury. These findings highlight the critical role played by the EMP1-CERS2-dhCers axis in constraining ER stress and preserving HSC potential. A new study shows EMP1 protects hematopoietic stem cells by suppressing sphingolipid metabolism and ER stress. EMP1 interacts with CERS2 to limit dihydroceramide production,which causes protein aggregation when elevated.
View Publication
产品类型:
产品号#:
19856
17936
产品名:
EasySep™小鼠造血祖细胞分选试剂盒
EasySep™人祖细胞富集试剂盒II
Calado RT et al. (SEP 2009)
Blood 114 11 2236--43
Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells.
Androgens have been used in the treatment of bone marrow failure syndromes without a clear understanding of their mechanism of action. Blood counts of patients with dyskeratosis congenita or aplastic anemia with mutations in telomerase genes can improve with androgen therapy. Here we observed that exposure in vitro of normal peripheral blood lymphocytes and human bone marrow-derived CD34(+) cells to androgens increased telomerase activity,coincident with higher TERT mRNA levels. Cells from patients who were heterozygous for telomerase mutations had low baseline telomerase activity,which was restored to normal levels by exposure to androgens. Estradiol had an effect similar to androgens on TERT gene expression and telomerase enzymatic activity. Tamoxifen abolished the effects of both estradiol and androgens on telomerase function,and letrozole,an aromatase inhibitor,blocked androgen effects on telomerase activity. Conversely,flutamide,an androgen receptor antagonist,did not affect androgen stimulation of telomerase. Down-regulation by siRNA of estrogen receptor-alpha (ER alpha),but not ER beta,inhibited estrogen-stimulated telomerase function. Our results provide a mechanism for androgen therapy in bone marrow failure: androgens appear to regulate telomerase expression and activity mainly by aromatization and through ER alpha. These findings have potential implications for the choice of current androgenic compounds and the development of future agents for clinical use.
View Publication
产品类型:
产品号#:
02690
09850
产品名:
StemSpan™CC100
M. Xiong et al. (Sep 2024)
Stem Cell Research & Therapy 15 13
Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood
Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly,the relationships between dynamic metabolic alterations and their functions remain poorly characterized. In this study,we comprehensively described the proteomics of HSPCs in the human fetal liver (FL),umbilical cord blood (UCB),and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay,RT‒PCR,and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production,the metabolic state,and the expansion of human HSPCs,HSPCs were treated with buthionine sulfoximine (BSO),an inhibitor of glutathione synthetase,and N-acetyl-L-cysteine (NAC). We investigated the metabolomic landscape of human HSPCs from the fetal,perinatal,and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays,mitochondrial activity,ROS level,glucose uptake,and protein synthesis rate analysis supported our findings. In addition,immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs,indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore,the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. The metabolic landscape of human HSPCs at three developmental stages (FL,UCB,and aBM),combined with proteomics and functional validations,substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life. The online version contains supplementary material available at 10.1186/s13287-024-03930-x.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Li C-S et al. (MAR 2016)
Biomaterials 83 194--206
Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However,currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability,painful and invasive cell-harvesting procedures,and tumorigenesis. Previously,we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan,fibromodulin (FMOD),circumventing gene transduction. In this study,we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect,contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence,engraftment,and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together,we have provided an extended potency,safety,and molecular profile of FReP cell-based bone regeneration. Therefore,FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
05872
05873
05893
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
Hwang Y et al. (JUL 2011)
Regenerative medicine 6 4 505--24
Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells.
Stem cells hold great promise for therapies aimed at regenerating damaged tissue,drug screening and studying in vitro models of human disease. However,many challenges remain before these applications can become a reality. One such challenge is developing chemically defined and scalable culture conditions for derivation and expansion of clinically viable human pluripotent stem cells,as well as controlling their differentiation with high specificity. Interaction of stem cells with their extracellular microenvironment plays an important role in determining their differentiation commitment and functions. Regenerative medicine approaches integrating cell-matrix and cell-cell interactions,and soluble factors could lead to development of robust microenvironments to control various cellular responses. Indeed,several of these recent developments have provided significant insight into the design of microenvironments that can elicit the targeted cellular response. In this article,we will focus on some of these developments with an emphasis on matrix-mediated expansion of human pluripotent stem cells while maintaining their pluripotency. We will also discuss the role of matrix-based cues and cell-cell interactions in the form of soluble signals in directing stem cell differentiation into musculoskeletal lineages.
View Publication