A. Alam et al. (sep 2022)
STAR protocols 3 3 101563
Isolation and adoptive transfer of innate lymphoid cells 2 to a recipient mouse model of PDAC.
Innate lymphoid cells 2 (ILC2) play a significant role in the tumorigenesis of pancreatic ductal adenocarcinoma (PDAC). An important aspect of ILC2-mediated tumorigenesis is the expansion of the resident ILC2 and simultaneous recruitment of the peripheral ILC2. Here,we describe a protocol for isolation,enrichment,and DiD labeling of ILC2 for in vivo tracking of ILC2s in the mouse. Further,we describe steps for the adoptive transfer of ILC2 to a recipient mouse model of PDAC. For complete details on the use and execution of this protocol,please refer to Alam et al. (2022).
View Publication
A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells
Regulated cell death is a key component of the innate immune response,which provides the first line of defense against infection and homeostatic perturbations. However,cell death can also drive pathogenesis. The most well-defined cell death pathways can be categorized as nonlytic (apoptosis) and lytic (pyroptosis,necroptosis,and PANoptosis). While specific triggers are known to induce each of these cell death pathways,it is unclear whether all cell types express the cell death proteins required to activate these pathways. Here,we assessed the protein expression and compared the responses of immune and non-immune cells of human and mouse origin to canonical pyroptotic (LPS plus ATP),apoptotic (staurosporine),necroptotic (TNF-α plus z-VAD),and PANoptotic (influenza A virus infection) stimuli. When compared to fibroblasts,both mouse and human innate immune cells,macrophages,expressed higher levels of cell death proteins and activated cell death effectors more robustly,including caspase-1,gasdermins,caspase-8,and RIPKs,in response to specific stimuli. Our findings highlight the importance of considering the cell type when examining the mechanisms regulating inflammation and cell death. Improved understanding of the cell types that contain the machinery to execute different forms of cell death and their link to innate immune responses is critical to identify new strategies to target these pathways in specific cellular populations for the treatment of infectious diseases,inflammatory disorders,and cancer.
View Publication
产品类型:
产品号#:
19669
产品名:
EasySep™ Direct人单核细胞分选试剂盒
Goyama S et al. (DEC 2004)
Blood 104 12 3558--64
The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region.
Acute myelogenous leukemia 1 (AML1; runt-related transcription factor 1 [Runx1]) is a member of Runx transcription factors and is essential for definitive hematopoiesis. Although AML1 possesses several subdomains of defined biochemical functions,the physiologic relevance of each subdomain to hematopoietic development has been poorly understood. Recently,the consequence of carboxy-terminal truncation in AML1 was analyzed by the hematopoietic rescue assay of AML1-deficient mouse embryonic stem cells using the gene knock-in approach. Nonetheless,a role for specific internal domains,as well as for mutations found in a human disease,of AML1 remains to be elucidated. In this study,we established an experimental system to efficiently evaluate the hematopoietic potential of AML1 using a coculture system of the murine embryonic para-aortic splanchnopleural (P-Sp) region with a stromal cell line,OP9. In this system,the hematopoietic defect of AML1-deficient P-Sp can be rescued by expressing AML1 with retroviral infection. By analysis of AML1 mutants,we demonstrated that the hematopoietic potential of AML1 was closely related to its transcriptional activity. Furthermore,we showed that other Runx transcription factors,Runx2/AML3 or Runx3/AML2,could rescue the hematopoietic defect of AML1-deficient P-Sp. Thus,this experimental system will become a valuable tool to analyze the physiologic function and domain contribution of Runx proteins in hematopoiesis.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
H. C. Lee et al. (11 2015)
Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 21 1948-54
Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse of Acute Myeloid Leukemia and Myelodysplastic Syndromes.
Chimerism testing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represents a promising tool for predicting disease relapse,although its precise role in this setting remains unclear. We investigated the predictive value of T lymphocyte chimerism analysis at 90 to 120 days after allo-HSCT in 378 patients with AML/MDS who underwent busulfan/fludarabine-based myeloablative preparative regimens. Of 265 (70%) patients with available T lymphocyte chimerism data,43% of patients in first or second complete remission (CR1/CR2) at the time of transplantation had complete (100%) donor T lymphocytes at day +90 to +120 compared with 60% of patients in the non-CR1/CR2 cohort (P = .005). In CR1/CR2 patients,donor T lymphocyte chimerism ?85% at day +90 to +120 was associated with a higher frequency of 3-year disease progression (29%; 95% confidence interval [CI],18% to 46% versus 15%; 95% CI,9% to 23%; hazard ratio [HR],2.1; P = .04). However,in the more advanced,non-CR1/CR2 cohort,mixed T lymphocyte chimerism was not associated with relapse (37%; 95% CI,20% to 66% versus 34%; 95% CI,25% to 47%; HR,1.3; P = .60). These findings demonstrate that early T lymphocyte chimerism testing at day +90 to +120 is a useful approach for predicting AML/MDS disease recurrence in patients in CR1/CR2 at the time of transplantation.
View Publication
产品类型:
产品号#:
21000
产品名:
RoboSep™- S
Dobo I et al. (AUG 1995)
Journal of hematotherapy 4 4 281--7
Collagen matrix: an attractive alternative to agar and methylcellulose for the culture of hematopoietic progenitors in autologous transplantation products.
Autografts using untreated or in vitro manipulated bone marrow and peripheral blood stem cells represent promising approaches to the treatment of malignant diseases. In this work,the collagen gel culture technique was compared with agar and methylcellulose for its capacity to permit the growth of human granulomonocytic (day 14 CFU-GM; collagen vs agar or MTC) or erythroblastic (day 7 CFU-E and day 14 BFU-E; collagen versus methylcellulose) colonies in autologous transplantation products. Our results show that the collagen culture system always gave as many or more colonies than the other techniques. It also allowed harvesting of gels onto glass slides and subsequent May-Grünwald-Giemsa,cytochemical or immunocytochemical staining. We suggest that the collagen assay represents an interesting alternative to the widely used agar or methylcellulose systems for the culture of hematopoietic progenitors because of the equal or higher number of colonies detected,the easy phenotypical identification of colonies in stained gels,and the ability to store high-quality documentation. This technique is particularly attractive for use in the quality control of autologous bone marrow transplantation procedures.
View Publication
产品类型:
产品号#:
04961
04965
04962
04915
04807
04809
04906
04913
04803
04804
04905
04850
04974
04902
04960
04900
04901
04963
04970
04971
产品名:
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C cfu染色试剂盒
MegaCult™-C含脂培养基
MegaCult™-C胶原蛋白和脂质培养基
胶原蛋白溶液
MegaCult™-C胶原蛋白和不含细胞因子的培养基
MegaCult™-C培养基无细胞因子
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
De Felice L et al. (FEB 2005)
Cancer research 65 4 1505--13
Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells.
Ex vivo amplification of human hematopoietic stem cells (HSC) without loss of their self-renewing potential represents an important target for transplantation,gene and cellular therapies. Valproic acid is a safe and widely used neurologic agent that acts as a potent inhibitor of histone deacetylase activities. Here,we show that valproic acid addition to liquid cultures of human CD34+ cells isolated from cord blood,mobilized peripheral blood,and bone marrow strongly enhances the ex vivo expansion potential of different cytokine cocktails as shown by morphologic,cytochemical,immunophenotypical,clonogenic,and gene expression analyses. Notably,valproic acid highly preserves the CD34 positivity after 1 week (range,40-89%) or 3 weeks (range,21-52%) amplification cultures with two (Flt3L + thrombopoietin) or four cytokines (Flt3L + thrombopoietin + stem cell factor + interleukin 3). Moreover,valproic acid treatment increases histone H4 acetylation levels at specific regulatory sites on HOXB4,a transcription factor gene with a key role in the regulation of HSC self-renewal and AC133,a recognized marker gene for stem cell populations. Overall,our results relate the changes induced by valproic acid on chromatin accessibility with the enhancement of the cytokine effect on the maintenance and expansion of a primitive hematopoietic stem cell population. These findings underscore the potentiality of novel epigenetic approaches to modify HSC fate in vitro.
View Publication
产品类型:
产品号#:
72292
产品名:
Valproic Acid (Sodium Salt)
Shao L et al. (JUN 2010)
Blood 115 23 4707--14
Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.
Bone marrow injury is a major adverse side effect of radiation and chemotherapy. Attempts to limit such damage are warranted,but their success requires a better understanding of how radiation and anticancer drugs harm the bone marrow. Here,we report one pivotal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). Puma deficiency in mice confers resistance to high-dose radiation in a hematopoietic cell-autonomous manner. Unexpectedly,loss of one Puma allele is sufficient to confer mice radioresistance. Interestingly,null mutation in Puma protects both primitive and differentiated hematopoietic cells from damage caused by low-dose radiation but selectively protects HSCs and HPCs against high-dose radiation,thereby accelerating hematopoietic regeneration. Consistent with these findings,Puma is required for radiation-induced apoptosis in HSCs and HPCs,and Puma is selectively induced by irradiation in primitive hematopoietic cells,and this induction is impaired in Puma-heterozygous cells. Together,our data indicate that selective targeting of p53 downstream apoptotic targets may represent a novel strategy to protecting HSCs and HPCs in patients undergoing intensive cancer radiotherapy and chemotherapy.
View Publication
产品类型:
产品号#:
产品名:
Yang J-Y et al. (JUN 2013)
Cell Transplantation 22 6 945--959
SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells.
Neural cells derived from induced pluripotent stem cells (iPSCs) have the potential for autologous cell therapies in treating patients with severe neurological disorders or injury. However,further study of efficacy and safety are needed in large animal preclinical models that have similar neural anatomy and physiology to humans such as the pig. The pig model for pluripotent stem cell therapy has been made possible for the first time with the development of pig iPSCs (piPSCs) capable of in vitro and in vivo differentiation into tissues of all three germ layers. Still,the question remains if piPSCs are capable of undergoing robust neural differentiation using a system similar to those being used with human iPSCs. In this study,we generated a new line of piPSCs from fibroblast cells that expressed pluripotency markers and were capable of embryoid body differentiation into all three germ layers. piPSCs demonstrated robust neural differentiation forming βIII-TUB/MAP2+ neurons,GFAP+ astrocytes,and O4+ oligodendrocytes and demonstrated strong upregulation of neural cell genes representative of all three major neural lineages of the central nervous system. In the presence of motor neuron signaling factors,piPSC-derived neurons showed expression of transcription factors associated with motor neuron differentiation (HB9 and ISLET1). Our findings demonstrate that SSEA4 expression is required for piPSCs to differentiate into neurons,astrocytes,and oligodendrocytes and furthermore develop specific neuronal subtypes. This indicates that the pigs can fill the need for a powerful model to study autologous neural iPSC therapies in a system similar to humans.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Ohno Y et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 50 21529--34
Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential.
Retrovirus-mediated transduction of Hoxb4 enhances hematopoietic stem cell (HSC) activity and enforced expression of Hoxb4 induces in vitro development of HSCs from differentiating mouse embryonic stem cells,but the underlying molecular mechanism remains unclear. We previously showed that the HSC activity was abrogated by accumulated Geminin,an inhibitor for the DNA replication licensing factor Cdt1 in mice deficient in Rae28 (also known as Phc1),which encodes a member of Polycomb-group complex 1. In this study we found that Hoxb4 transduction reduced accumulated Geminin in Rae28-deficient mice,despite increasing the mRNA,and restored the impaired HSC activity. Supertransduction of Geminin suppressed the HSC activity induced by Hoxb4 transduction,whereas knockdown of Geminin promoted the clonogenic and replating activities,indicating the importance of Geminin regulation in the molecular mechanism underlying Hoxb4 transduction-mediated enhancement of the HSC activity. This facilitated our investigation of how transduced Hoxb4 reduced Geminin. We showed in vitro and in vivo that Hoxb4 and the Roc1 (also known as Rbx1)-Ddb1-Cul4a ubiquitin ligase core component formed a complex designated as RDCOXB4,which acted as an E3 ubiquitin ligase for Geminin and down-regulated Geminin through the ubiquitin-proteasome system. Down-regulated Geminin and the resultant E2F activation may provide cells with proliferation potential by increasing a DNA prereplicative complex loaded onto chromatin. Here we suggest that transduced Hoxb4 down-regulates Geminin protein probably by constituting the E3 ubiquitin ligase for Geminin to provide hematopoietic stem and progenitor cells with proliferation potential.
View Publication