Dixit D et al. (JAN 2014)
Cell death & disease 5 e1212
Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism.
Oxidative stress serves as an important regulator of both apoptosis and metabolic reprogramming in tumor cells. Chaetocin,a histone methyltransferase inhibitor,is known to induce ROS generation. As elevating basal ROS level sensitizes glioma cells to apoptosis,the ability of Chaetocin in regulating apoptotic and metabolic adaptive responses in glioma was investigated. Chaetocin induced glioma cell apoptosis in a ROS-dependent manner. Increased intracellular ROS induced (i) Yes-associated protein 1 (YAP1) expression independent of the canonical Hippo pathway as well as (ii) ATM and JNK activation. Increased interaction of YAP1 with p73 and p300 induced apoptosis in an ATM-dependent manner. Chaetocin induced JNK modulated several metabolic parameters like glucose uptake,lactate production,ATP generation,and activity of glycolytic enzymes hexokinase and pyruvate kinase. However,JNK had no effect on ATM or YAP1 expression. Coherent with the in vitro findings,Chaetocin reduced tumor burden in heterotypic xenograft glioma mouse model. Chaetocin-treated tumors exhibited heightened ROS,pATM,YAP1 and pJNK levels. Our study highlights the coordinated control of glioma cell proliferation and metabolism by ROS through (i) ATM-YAP1-driven apoptotic pathway and (ii) JNK-regulated metabolic adaptation. The elucidation of these newfound connections and the roles played by ROS to simultaneously shift metabolic program and induce apoptosis could provide insights toward the development of new anti-glioma strategies.
View Publication
产品类型:
产品号#:
73592
产品名:
毛壳素
Kapinas K et al. (JAN 2015)
Journal of Cellular Physiology 230 1 63--70
microRNA-mediated survivin control of pluripotency
Understanding the mechanisms that sustain pluripotency in human embryonic stem cells (hESCs) is an active area of research that may prove useful in regenerative medicine and will provide fundamental information relevant to development and cancer. hESCs and cancer cells share the unique ability to proliferate indefinitely and rapidly. Because the protein survivin is uniquely overexpressed in virtually all human cancers and in hESCs,we sought to investigate its role in supporting the distinctive capabilities of these cell types. Results presented here suggest that survivin contributes to the maintenance of pluripotency and that post-transcriptional control of survivin isoform expression is selectively regulated by microRNAs. miR-203 has been extensively studied in human tumors,but has not been characterized in hESCs. We show that miR-203 expression and activity is consistent with the expression and subcellular localization of survivin isoforms that in turn modulate expression of the Oct4 and Nanog transcription factors to sustain pluripotency. This study contributes to understanding of the complex regulatory mechanisms that govern whether hESCs proliferate or commit to lineages. textcopyright 2014 Wiley Periodicals,Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang J and Wang JH-C (MAY 2014)
Bone research 2
Kartogenin induces cartilage-like tissue formation in tendon-bone junction.
Tendon-bone junctions (TBJs) are frequently injured,especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN),a biocompound,to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells,as demonstrated by high expression levels of chondrogenic markers aggrecan,collagen II and Sox-9. Besides,KGN induced the formation of cartilage-like tissues in cell cultures,as observed through the staining of abundant proteoglycans,collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo,KGN induced cartilage-like tissue formation in the injected area. Similarly,when KGN was injected into experimentally injured rat Achilles TBJs,wound healing in the TBJs was enhanced,as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.
View Publication
产品类型:
产品号#:
72572
产品名:
Youm Y-H et al. (MAR 2015)
Nature medicine 21 3 263--9
The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease.
The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation,caloric restriction,high-intensity exercise,or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however,the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB,but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate,suppresses activation of the NLRP3 inflammasome in response to urate crystals,ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family,CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11,inflammasome activation. Mechanistically,BHB inhibits the NLRP3 inflammasome by preventing K(+) efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK),reactive oxygen species (ROS),autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle,and independently of uncoupling protein-2 (UCP2),sirtuin-2 (SIRT2),the G protein-coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome-mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo,BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle-Wells syndrome,familial cold autoinflammatory syndrome and urate crystal-induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.
View Publication
产品类型:
产品号#:
73052
73054
产品名:
AGK2
Elliott G et al. (DEC 2015)
Nature Communications 6 1 6363
Intermediate DNA methylation is a conserved signature of genome regulation
The role of intermediate methylation states in DNA is unclear. Here,to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity,we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers,exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation,are predominantly allele-independent and are conserved across individuals and between mouse and human,suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons,highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.
View Publication
产品类型:
产品号#:
05750
05751
05850
05857
05870
05875
07923
07900
07910
19155
19155RF
19157
19157RF
36254
21000
20119
20155
85850
85857
85870
85875
100-0762
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Dispase (1 U/mL)
DNase I 溶液(1 mg/mL)
胰蛋白酶-EDTA(0.05%)
EasySep™人记忆CD4+ T细胞富集试剂盒
RoboSep™ 人记忆CD4 T细胞富集试剂盒含滤芯吸头
DMEM/F-12 with 15 mM HEPES
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
mTeSR™1
mTeSR™1
DNase I溶液(1mg /mL)
Pone EJ et al. ( 2015)
The Journal of Immunology 194 7 3065--3078
B Cell Rab7 Mediates Induction of Activation-Induced Cytidine Deaminase Expression and Class-Switching in T-Dependent and T-Independent Antibody Responses
Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation,CSR requires activation-induced cytidine deaminase (AID),whose expression is restricted to B cells,as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice,we identified a B cell-intrinsic role for Rab7,a small GTPase involved in intracellular membrane functions,in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription,as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed,in vivo and in vitro,normal proliferation and survival,normal Blimp-1 expression and plasma cell differentiation,as well as intact activation of the noncanonical NF-κB,p38 kinase,and ERK1/2 kinase pathways. They,however,were defective in AID expression and CSR in vivo and in vitro,as induced by CD40 engagement or dual TLR1/2-,TLR4-,TLR7-,or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells,CSR was rescued by enforced AID expression. These findings,together with our demonstration that Rab7-mediated canonical NF-κB activation,as critical to AID induction,outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR,likely by promoting assembly of signaling complexes along intracellular membranes.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Diaz MF et al. (MAY 2015)
The Journal of experimental medicine 212 5 665--80
Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis.
Blood flow promotes emergence of definitive hematopoietic stem cells (HSCs) in the developing embryo,yet the signals generated by hemodynamic forces that influence hematopoietic potential remain poorly defined. Here we show that fluid shear stress endows long-term multilineage engraftment potential upon early hematopoietic tissues at embryonic day 9.5,an embryonic stage not previously described to harbor HSCs. Effects on hematopoiesis are mediated in part by a cascade downstream of wall shear stress that involves calcium efflux and stimulation of the prostaglandin E2 (PGE2)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling axis. Blockade of the PGE2-cAMP-PKA pathway in the aorta-gonad-mesonephros (AGM) abolished enhancement in hematopoietic activity. Furthermore,Ncx1 heartbeat mutants,as well as static cultures of AGM,exhibit lower levels of expression of prostaglandin synthases and reduced phosphorylation of the cAMP response element-binding protein (CREB). Similar to flow-exposed cultures,transient treatment of AGM with the synthetic analogue 16,16-dimethyl-PGE2 stimulates more robust engraftment of adult recipients and greater lymphoid reconstitution. These data provide one mechanism by which biomechanical forces induced by blood flow modulate hematopoietic potential.
View Publication
Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition
Tools for rapid and efficient transgenesis in safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nie Z et al. (FEB 2016)
Acta biochimica et biophysica Sinica 48 2 194--201
Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression.
The prostate transmembrane protein,androgen-induced 1 (PMEPA1) has been previously shown to promote solid malignancies in a variety of cancers,but the role and mechanisms of PMEPA1 in breast cancer has not been fully addressed. Here,we found that PMEPA1 was upregulated in breast cancer cell lines as well as in a set of clinical invasive breast ductal carcinomas. Interestingly,depletion of PMEPA1 decreased breast cancer stem cell (CSC)-enriched populations,while ectopic overexpression of PMEPA1 increased breast CSC-enriched populations. Furthermore,transforming growth factor-$$ (TGF-$$) treatment was also found to upregulate PMEPA1 expression and the CSC-enriched populations in triple-negative breast cancer cell lines. TGF-$$-induced PMEPA1 expression partially contributed to TGF-$$-induced breast CSC maintenance. These findings suggest that TGF-$$-PMEPA1 axis might provide new diagnosis and therapeutic targets for breast cancer treatment.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Twu Y-C et al. (DEC 2007)
Blood 110 13 4526--34
I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha.
The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine,respectively,and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC,and that the last of these is responsible for the I branching formation on red cells. In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha),which enhances transcription of the IGnTC gene,consequently leading to formation of the I antigen. Further investigation suggested that C/EBPalpha IGnTC-activation activity is modulated at a posttranslational level,and that the phosphorylation status of C/EBPalpha may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hemopoietic cells demonstrating the determining role of C/EBPalpha in the induction of the IGnTC gene as well as in I antigen expression.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Leong KG et al. (NOV 2007)
The Journal of experimental medicine 204 12 2935--48
Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin.
Aberrant expression of Jagged1 and Notch1 are associated with poor outcome in breast cancer. However,the reason that Jagged1 and/or Notch overexpression portends a poor prognosis is unknown. We identify Slug,a transcriptional repressor,as a novel Notch target and show that elevated levels of Slug correlate with increased expression of Jagged1 in various human cancers. Slug was essential for Notch-mediated repression of E-cadherin,which resulted in beta-catenin activation and resistance to anoikis. Inhibition of ligand-induced Notch signaling in xenografted Slug-positive/E-cadherin-negative breast tumors promoted apoptosis and inhibited tumor growth and metastasis. This response was associated with down-regulated Slug expression,reexpression of E-cadherin,and suppression of active beta-catenin. Our findings suggest that ligand-induced Notch activation,through the induction of Slug,promotes tumor growth and metastasis characterized by epithelial-to-mesenchymal transition and inhibition of anoikis.
View Publication
产品类型:
产品号#:
18356
18356RF
产品名:
Khorashad JS et al. (JUN 2009)
Haematologica 94 6 861--4
The level of BCR-ABL1 kinase activity before treatment does not identify chronic myeloid leukemia patients who fail to achieve a complete cytogenetic response on imatinib.
Imatinib is currently the first line therapy for newly diagnosed patients with chronic myeloid leukemia. However,20-25% of patients do not achieve durable complete cytogenetic responses. The mechanism underlying this primary resistance is unknown,but variations in BCR-ABL1 kinase activity may play a role and can be investigated by measuring the autophosphorylation levels of BCR-ABL1 or of a surrogate target such as Crkl. In this study we used flow cytometry to investigate the in vitro inhibition of Crkl phosphorylation by imatinib in CD34(+) cells in diagnostic samples from two groups of patients distinguished by their cytogenetic response. No difference in inhibition of Crkl phosphorylation was observed in the two groups. The observation that increasing the dose of imatinib in vivo did not increase the level of cytogenetic response in some non-responders suggests that in at least a proportion of patients imatinib resistance may be due to activation of BCR-ABL1-independent pathway.
View Publication