Y. Ding et al. (Mar 2025)
Journal of Hematology & Oncology 18
Disruption of the sorcin‒PAX5 protein‒protein interaction induces ferroptosis by promoting the FBXL12-mediated ubiquitination of ALDH1A1 in pancreatic cancer
Pancreatic cancer is one of the most malignant cancers,and limited therapeutic options are available. The induction of ferroptosis is considered to be a novel,promising strategy that has potential in cancer treatment,and ferroptosis inducers may be new options for eradicating malignant cancers that are resistant to traditional drugs. The exact mechanism underlying the function of sorcin in the initiation and progression of pancreatic cancer remains unclear. The expression of sorcin in cancer tissues was assessed by analyzing TCGA,GEO and immunohistochemical staining data,and the function of sorcin in the induction of ferroptosis in pancreatic cancer cells was investigated. The mechanism underlying the function of sorcin was revealed through proteomics,co-IP,Ch-IP,and luciferase assays. Natural product screening was subsequently performed to screen for products that interact with sorcin to identify new ferroptosis inducers. We first showed that sorcin expression was positively correlated with the survival and tumor stages of patients with pancreatic cancer,and we revealed that sorcin inhibited ferroptosis through its noncalcium binding function. Furthermore,we discovered that sorcin interacted with PAX5 in the cytoplasm and inhibited PAX5 nuclear translocation,which in turn decreased FBXL12 protein expression and then reduced ALDH1A1 ubiquitination,thus inhibiting ferroptosis. Moreover,an in-house natural product screen revealed that celastrol inhibited the interaction of sorcin and PAX5 by directly binding to the Cys194 residue of the sorcin protein; disruption of the sorcin-PAX5 interaction promoted the nuclear translocation of PAX5,induced the expression of FBXL12,increased the ubiquitylation of ALDH1A1,and eventually induced ferroptosis in pancreatic cancer cells. In this study,we revealed the mechanism of action of sorcin,which is a druggable target for inducing ferroptosis,we identified celastrol as a novel agent that induces ferroptosis,and we showed that disrupting the sorcin-PAX5 interaction is a promising therapeutic strategy for treating pancreatic cancer. The online version contains supplementary material available at 10.1186/s13045-025-01680-8.
View Publication
产品类型:
产品号#:
01700
产品名:
ALDEFLUOR™ 试剂盒
N. Motosugi et al. (Jul 2025)
Stem Cell Research & Therapy 16
Highly efficient XIST reactivation in female hPSC by transient dual inhibition of TP53 and DNA methylation during Cas9 mediated genome editing
The irreversible erosion of X-chromosome inactivation (XCI) due to repression of the long non-coding RNA XIST presents a major challenge for disease modeling and raises safety concerns for the clinical application of female human pluripotent stem cells (hPSCs) due to the aberrant overexpression of X-linked genes. While Cas9-mediated non-homologous end joining (NHEJ) targeting the XIST promoter can induce DNA demethylation and restore XCI by reactivating XIST,its efficiency remains low. Here,we introduce a highly efficient strategy for XIST reactivation by combining TP53 inhibition with suppression of DNA methylation maintenance during Cas9-mediated NHEJ. This dual-inhibition approach increased the proportion of XIST -positive hPSCs from ~ 5 to ~ 43.7%,providing a robust method for stabilizing XCI in female hPSCs for diverse applications. The online version contains supplementary material available at 10.1186/s13287-025-04501-4.
View Publication
产品类型:
产品号#:
08570
产品名:
STEMdiff™ 脑类器官试剂盒
A. M. Cameron et al. ( 2019)
Nature immunology 20 4 420--432
Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage.
The adoption of Warburg metabolism is critical for the activation of macrophages in response to lipopolysaccharide. Macrophages stimulated with lipopolysaccharide increase their expression of nicotinamide phosphoribosyltransferase (NAMPT),a key enzyme in NAD+ salvage,and loss of NAMPT activity alters their inflammatory potential. However,the events that lead to the cells' becoming dependent on NAD+ salvage remain poorly defined. We found that depletion of NAD+ and increased expression of NAMPT occurred rapidly after inflammatory activation and coincided with DNA damage caused by reactive oxygen species (ROS). ROS produced by complex III of the mitochondrial electron-transport chain were required for macrophage activation. DNA damage was associated with activation of poly(ADP-ribose) polymerase,which led to consumption of NAD+. In this setting,increased NAMPT expression allowed the maintenance of NAD+ pools sufficient for glyceraldehyde-3-phosphate dehydrogenase activity and Warburg metabolism. Our findings provide an integrated explanation for the dependence of inflammatory macrophages on the NAD+ salvage pathway.
View Publication
Zhou L et al. (AUG 2002)
Journal of molecular biology 321 4 591--9
Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases.
Mechanism-based inhibitors of enzymes,which mimic reactive intermediates in the reaction pathway,have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here,we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone,an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation of a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.
View Publication
产品类型:
产品号#:
72902
产品名:
Zebularine
Wulf GG et al. (MAR 2003)
Blood 101 6 2434--9
Anti-CD45-mediated cytoreduction to facilitate allogeneic stem cell transplantation.
The CD45 antigen is present on all cells of the hematopoietic lineage. Using a murine model,we have determined whether a lytic CD45 monoclonal antibody can produce persistent aplasia and whether it could facilitate syngeneic or allogeneic stem cell engraftment. After its systemic administration,we found saturating quantities of the antibody on all cells expressing the CD45 antigen,both in marrow and in lymphoid organs. All leukocyte subsets in peripheral blood were markedly diminished during or soon after anti-CD45 treatment,but only the effect on the lymphoid compartment was sustained. In contrast to the prolonged depletion of T and B lymphocytes from the thymus and spleen,peripheral blood neutrophils began to recover within 24 hours after the first anti-CD45 injection and marrow progenitor cells were spared from destruction,despite being coated with saturating quantities of anti-CD45. Given the transient effects of the monoclonal antibody on myelopoiesis and the more persistent effects on lymphopoiesis,we asked whether this agent could contribute to donor hematopoietic engraftment following nonmyeloablative transplantation. Treatment with anti-CD45 alone did not enhance syngeneic engraftment,consistent with its inability to destroy progenitor cells and permit competitive repopulation with syngeneic donor stem cells. By contrast,the combination of anti-CD45 and an otherwise inactive dose of total-body irradiation allowed engraftment of H2 fully allogeneic donor stem cells. We attribute this result to the recipient immunosuppression produced by depletion of CD45(+) lymphocytes. Monoclonal antibodies of this type may therefore have an adjunctive role in nonmyeloablative conditioning regimens for allogeneic stem cell transplantation.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Sawyer JS et al. (SEP 2003)
Journal of medicinal chemistry 46 19 3953--6
Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain.
Pyrazole-based inhibitors of the transforming growth factor-beta type I receptor kinase domain (TbetaR-I) are described. Examination of the SAR in both enzyme- and cell-based in vitro assays resulted in the emergence of two subseries featuring differing selectivity versus p38 MAP kinase. A common binding mode at the active site has been established by successful cocrystallization and X-ray analysis of potent inhibitors with the TbetaR-I receptor kinase domain.
View Publication
产品类型:
产品号#:
72592
产品名:
LY364947
Tong W and Lodish HF (SEP 2004)
The Journal of experimental medicine 200 5 569--80
Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis.
Thrombopoietin (Tpo) is the primary cytokine regulating megakaryocyte development and platelet production. Tpo signaling through its receptor,c-mpl,activates multiple pathways including signal transducer and activator of transcription (STAT)3,STAT5,phosphoinositide 3-kinase-Akt,and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor and immunoreceptor signaling. Here,we show that Lnk overexpression negatively regulates Tpo-mediated cell proliferation and endomitosis in hematopoietic cell lines and primary hematopoietic cells. Lnk attenuates Tpo-induced S-phase progression in 32D cells expressing mpl,and Lnk decreases Tpo-dependent megakaryocyte growth in bone marrow (BM)-derived megakaryocyte culture. Consistent with this result,we found that in both BM and spleen,Lnk-deficient mice exhibited increased numbers of megakaryocytes with increased ploidy compared with wild-type mice. In addition,Lnk-deficient megakaryocytes derived from BM and spleen showed enhanced sensitivity to Tpo during culture. The absence of Lnk caused enhanced and prolonged Tpo induction of STAT3,STAT5,Akt,and MAPK signaling pathways in CD41+ megakaryocytes. Furthermore,the Src homology 2 domain of Lnk is essential for Lnk's inhibitory function. In contrast,the conserved tyrosine near the COOH terminus is dispensable and the pleckstrin homology domain of Lnk contributes to,but is not essential for,inhibiting Tpo-dependent 32D cell growth or megakaryocyte development. Thus,Lnk negatively modulates mpl signaling pathways and is important for Tpo-mediated megakaryocytopoiesis in vivo.
View Publication
产品类型:
产品号#:
13056
18555
18555RF
产品名:
Eksteen B et al. (DEC 2004)
The Journal of experimental medicine 200 11 1511--7
Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis.
Primary sclerosing cholangitis (PSC),a chronic inflammatory liver disease characterized by progressive bile duct destruction,develops as an extra-intestinal complication of inflammatory bowel disease (IBD) (Chapman,R.W. 1991. Gut. 32:1433-1435). However,the liver and bowel inflammation are rarely concomitant,and PSC can develop in patients whose colons have been removed previously. We hypothesized that PSC is mediated by long-lived memory T cells originally activated in the gut,but able to mediate extra-intestinal inflammation in the absence of active IBD (Grant,A.J.,P.F. Lalor,M. Salmi,S. Jalkanen,and D.H. Adams. 2002. Lancet. 359:150-157). In support of this,we show that liver-infiltrating lymphocytes in PSC include mucosal T cells recruited to the liver by aberrant expression of the gut-specific chemokine CCL25 that activates alpha4beta7 binding to mucosal addressin cell adhesion molecule 1 on the hepatic endothelium. This is the first demonstration in humans that T cells activated in the gut can be recruited to an extra-intestinal site of disease and provides a paradigm to explain the pathogenesis of extra-intestinal complications of IBD.
View Publication
产品类型:
产品号#:
18552
18552RF
18551
18551RF
18561
产品名:
Starlets D et al. (JUN 2006)
Blood 107 12 4807--16
Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival.
CD74 is an integral membrane protein that was thought to function mainly as an MHC class II chaperone. However,CD74 was recently shown to have a role as an accessory-signaling molecule. Our studies demonstrated that CD74 regulates B-cell differentiation by inducing a pathway leading to the activation of transcription mediated by the NF-kappaB p65/RelA homodimer and its coactivator,TAF(II)105. Here,we show that CD74 stimulation with anti-CD74 antibody leads to an induction of a signaling cascade resulting in NF-kappaB activation,entry of the stimulated cells into the S phase,elevation of DNA synthesis,cell division,and augmented expression of BCL-X(L). These studies therefore demonstrate that surface CD74 functions as a survival receptor.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Li H-y et al. (MAR 2006)
Journal of medicinal chemistry 49 6 2138--42
Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7.
Novel dihydropyrrolopyrazole-substituted benzimidazoles were synthesized and evaluated in vitro as inhibitors of transforming growth factor-beta type I receptor (TGF-beta RI),TGF-beta RII,and mixed lineage kinase-7 (MLK-7). These compounds were found to be potent TGF-beta RI inhibitors and selective versus TGF-beta RII and MLK-7 kinases. Benzimidazole derivative 8b was active in an in vivo target (TGF-beta RI) inhibition assay.
View Publication