Brewer GJ et al. (AUG 1993)
Journal of neuroscience research 35 5 567--76
Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination.
We have systematically optimized the concentrations of 20 components of a previously published serum-free medium (Brewer and Cotman,Brain Res 494: 65-74,1989) for survival of rat embryonic hippocampal neurons after 4 days in culture. This serum-free medium supplement,B27,produced neuron survival above 60%,independent of plating density above 160 plated cells/mm2. For isolated cells (textless 100 cells/mm2),survival at 4 days was still above 45%,but could be rescued to the 60% level at 40 cells/mm2 by simply applying a coverslip on top of the cells. This suggests a need for additional trophic factors. High survival was achieved with osmolarity lower than found in Dulbecco's Modified Eagle's Medium (DMEM),and by reducing cysteine and glutamine concentrations and by the elimination of toxic ferrous sulphate found in DME/F12. Neurobasal is a new medium that incorporates these modifications to DMEM. In B27/Neurobasal,glial growth is reduced to less than 0.5% of the nearly pure neuronal population,as judged by immunocytochemistry for glial fibrillary acidic protein and neuron-specific enolase. Excellent long-term viability is achieved after 4 weeks in culture with greater than 90% viability for cells plated at 640/mm2 and greater than 50% viability for cells plated at 160/mm2. Since the medium also supports the growth of neurons from embryonic rat striatum,substantia nigra,septum,and cortex,and neonatal dentate gyrus and cerebellum (Brewer,in preparation),support for other neuron types is likely. B27/Neurobasal should be useful for in vitro studies of neuronal toxicology,pharmacology,electrophysiology,gene expression,development,and effects of growth factors and hormones.
View Publication
Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR
Embryonal tumors with multilayered rosettes (ETMRs) are rare,deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified,in all cases,C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors,cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2,a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic,brain-specific DNMT3B isoform.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Hornick EE et al. (FEB 2018)
Journal of immunology (Baltimore,Md. : 1950) 200 3 1188--1197
Nlrp12 Mediates Adverse Neutrophil Recruitment during Influenza Virus Infection.
Exaggerated inflammatory responses during influenza A virus (IAV) infection are typically associated with severe disease. Neutrophils are among the immune cells that can drive this excessive and detrimental inflammation. In moderation,however,neutrophils are necessary for optimal viral control. In this study,we explore the role of the nucleotide-binding domain leucine-rich repeat containing receptor family member Nlrp12 in modulating neutrophilic responses during lethal IAV infection. Nlrp12-/- mice are protected from lethality during IAV infection and show decreased vascular permeability,fewer pulmonary neutrophils,and a reduction in levels of neutrophil chemoattractant CXCL1 in their lungs compared with wild-type mice. Nlrp12-/- neutrophils and dendritic cells within the IAV-infected lungs produce less CXCL1 than their wild-type counterparts. Decreased CXCL1 production by Nlrp12-/- dendritic cells was not due to a difference in CXCL1 protein stability,but instead to a decrease in Cxcl1 mRNA stability. Together,these data demonstrate a previously unappreciated role for Nlrp12 in exacerbating the pathogenesis of IAV infection through the regulation of CXCL1-mediated neutrophilic responses.
View Publication
产品类型:
产品号#:
19762
19762RF
产品名:
EasySep™小鼠中性粒细胞富集试剂盒
RoboSep™ 小鼠中性粒细胞富集试剂盒含滤芯吸头
Y. Lin et al. (APR 2018)
Scientific reports 8 1 5907
Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs.
Nonhuman primate (NHP) models are more predictive than rodent models for developing induced pluripotent stem cell (iPSC)-based cell therapy,but robust and reproducible NHP iPSC-cardiomyocyte differentiation protocols are lacking for cardiomyopathies research. We developed a method to differentiate integration-free rhesus macaque iPSCs (RhiPSCs) into cardiomyocytes with {\textgreater}85{\%} purity in 10 days,using fully chemically defined conditions. To enable visualization of intracellular calcium flux in beating cardiomyocytes,we used CRISPR/Cas9 to stably knock-in genetically encoded calcium indicators at the rhesus AAVS1 safe harbor locus. Rhesus cardiomyocytes derived by our stepwise differentiation method express signature cardiac markers and show normal electrochemical coupling. They are responsive to cardiorelevant drugs and can be successfully engrafted in a mouse myocardial infarction model. Our approach provides a powerful tool for generation of NHP iPSC-derived cardiomyocytes amenable to utilization in basic research and preclinical studies,including in vivo tissue regeneration models and drug screening.
View Publication
产品类型:
产品号#:
09600
09650
07930
07931
07940
07955
07959
07952
100-1061
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
M. Shin et al. (MAR 2018)
Chemical science 9 9 2419--2431
Isoform-selective activity-based profiling of ERK signaling.
Extracellular signal-regulated kinases (ERKs) mediate downstream signaling of RAS-RAF-MEK as key regulators of the mitogen-activated protein kinase (MAPK) pathway. Activation of ERK signaling is a hallmark of cancer and upstream MAPK proteins have been extensively pursued as drug targets for cancer therapies. However,the rapid rise of resistance to clinical RAF and MEK inhibitors has prompted interest in targeting ERK (ERK1 and ERK2 isoforms) directly for cancer therapy. Current methods for evaluating activity of inhibitors against ERK isoforms are based primarily on analysis of recombinant proteins. Strategies to directly and independently profile native ERK1 and ERK2 activity would greatly complement current cell biological tools used to probe and target ERK function. Here,we present a quantitative chemoproteomic strategy that utilizes active-site directed probes to directly quantify native ERK activity in an isoform-specific fashion. We exploit a single isoleucine/leucine difference in ERK substrate binding sites to enable activity-based profiling of ERK1 versus ERK2 across a variety of cell types,tissues,and species. We used our chemoproteomic strategy to determine potency and selectivity of academic (VX-11e) and clinical (Ulixertinib) ERK inhibitors. Correlation of potency estimates by chemoproteomics with anti-proliferative activity of VX-11e and Ulixertinib revealed that {\textgreater}90{\%} inactivation of both native ERK1 and ERK2 is needed to mediate cellular activity of inhibitors. Our findings introduce one of the first assays capable of independent evaluation of native ERK1 and ERK2 activity to advance drug discovery of oncogenic MAPK pathways.
View Publication
产品类型:
产品号#:
70026
200-0165
产品名:
#N/A
人外周血CD4+ T细胞,冷冻
Rada-Iglesias A et al. (FEB 2011)
Nature 470 7333 279--83
A unique chromatin signature uncovers early developmental enhancers in humans.
Cell-fate transitions involve the integration of genomic information encoded by regulatory elements,such as enhancers,with the cellular environment. However,identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs),unique chromatin signatures identify two distinct classes of genomic elements,both of which are marked by the presence of chromatin regulators p300 and BRG1,monomethylation of histone H3 at lysine 4 (H3K4me1),and low nucleosomal density. In addition,elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac),overlap with previously characterized hESC enhancers,and are located proximally to genes expressed in hESCs and the epiblast. In contrast,elements of the second class,which we term 'poised enhancers',are distinguished by the absence of H3K27ac,enrichment of histone H3 lysine 27 trimethylation (H3K27me3),and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis,such as gastrulation,mesoderm formation and neurulation. Consistent with the poised identity,during differentiation of hESCs to neuroepithelium,a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos,poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene,even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover,the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient,rare cell populations representing early stages of human embryogenesis.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vaseva AV et al. (JAN 2011)
Cell death & disease 2 e156
Blockade of Hsp90 by 17AAG antagonizes MDMX and synergizes with Nutlin to induce p53-mediated apoptosis in solid tumors.
Strategies to induce p53 activation in wtp53-retaining tumors carry high potential in cancer therapy. Nutlin,a potent highly selective MDM2 inhibitor,induces non-genotoxic p53 activation. Although Nutlin shows promise in promoting cell death in hematopoietic malignancies,a major roadblock is that most solid cancers do not undergo apoptosis but merely reversible growth arrest. p53 inhibition by unopposed MDMX is one major cause for apoptosis resistance to Nutlin. The Hsp90 chaperone is ubiquitously activated in cancer cells and supports oncogenic survival pathways,many of which antagonize p53. The Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17AAG) is known to induce p53-dependent apoptosis. We show here that in multiple difficult-to-kill solid tumor cells 17AAG modulates several critical components that synergize with Nutlin-activated p53 signaling to convert Nutlin's transient cytostatic response into a cytotoxic killing response in vitro and in xenografts. Combined with Nutlin,17AAG destabilizes MDMX,reduces MDM2,induces PUMA and inhibits oncogenic survival pathways,such as PI3K/AKT,which counteract p53 signaling at multiple levels. Mechanistically,17AAG interferes with the repressive MDMX-p53 axis by inducing robust MDMX degradation,thereby markedly increasing p53 transcription compared with Nutlin alone. To our knowledge Nutlin+17AAG represents the first effective pharmacologic knockdown of MDMX. Our study identifies 17AAG as a promising synthetic lethal partner for a more efficient Nutlin-based therapy.
View Publication
产品类型:
产品号#:
73752
73754
产品名:
(±)-Nutlin-3
(±)-Nutlin-3
Futami M et al. (JUL 2011)
Blood 118 4 1077--86
G-CSF receptor activation of the Src kinase Lyn is mediated by Gab2 recruitment of the Shp2 phosphatase.
Src activation involves the coordinated regulation of positive and negative tyrosine phosphorylation sites. The mechanism whereby receptor tyrosine kinases,cytokine receptors,and integrins activate Src is not known. Here,we demonstrate that granulocyte colony-stimulating factor (G-CSF) activates Lyn,the predominant Src kinase in myeloid cells,through Gab2-mediated recruitment of Shp2. After G-CSF stimulation,Lyn dynamically associates with Gab2 in a spatiotemporal manner. The dephosphorylation of phospho-Lyn Tyr507 was abrogated in Shp2-deficient cells transfected with the G-CSF receptor but intact in cells expressing phosphatase-defective Shp2. Auto-phosphorylation of Lyn Tyr396 was impaired in cells treated with Gab2 siRNA. The constitutively activated Shp2E76A directed the dephosphorylation of phospho-Lyn Tyr507 in vitro. Tyr507 did not undergo dephosphorylation in G-CSF-stimulated cells expressing a mutant Gab2 unable to bind Shp2. We propose that Gab2 forms a complex with Lyn and after G-CSF stimulation,Gab2 recruits Shp2,which dephosphorylates phospho-Lyn Tyr507,leading to Lyn activation.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
Szabat M et al. (NOV 2011)
Cell death & disease 2 11 e232
Musashi expression in $\$-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes.
Diabetes is associated with the death and dysfunction of insulin-producing pancreatic $\$-cells. In other systems,Musashi genes regulate cell fate via Notch signaling,which we recently showed regulates $\$-cell survival. Here we show for the first time that human and mouse adult islet cells express mRNA and protein of both Musashi isoforms,as well Numb/Notch/Hes/neurogenin-3 pathway components. Musashi expression was observed in insulin/glucagon double-positive cells during human fetal development and increased during directed differentiation of human embryonic stem cells (hESCs) to the pancreatic lineage. De-differentiation of $\$-cells with activin A increased Msi1 expression. Endoplasmic reticulum (ER) stress increased Msi2 and Hes1,while it decreased Ins1 and Ins2 expression,revealing a molecular link between ER stress and $\$-cell dedifferentiation in type 2 diabetes. These effects were independent of changes in Numb protein levels and Notch activation. Overexpression of MSI1 was sufficient to increase Hes1,stimulate proliferation,inhibit apoptosis and reduce insulin expression,whereas Msi1 knockdown had the converse effects on proliferation and insulin expression. Overexpression of MSI2 resulted in a decrease in MSI1 expression. Taken together,these results demonstrate overlapping,but distinct roles for Musashi-1 and Musashi-2 in the control of insulin expression and $\$-cell proliferation. Our data also suggest that Musashi is a novel link between ER stress and the compensatory $\$-cell proliferation and the loss of $\$-cell gene expression seen in specific phases of the progression to type 2 diabetes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Viollet B et al. ( 2012)
Clinical science (London,England : 1979) 122 6 253--270
Cellular and molecular mechanisms of metformin: an overview.
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin,a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production,mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition,the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase),a cellular metabolic sensor,providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I,but not AMPK,is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism,metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome),reduce fatty liver,and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response,a promising new step towards personalized medicine in the treatment of T2D.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
Liu J et al. (MAY 2012)
PLoS ONE 7 5 e37559
Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes
We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent,stem cell-derived cardiomyocytes,including contraction force,rate,duration,and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy,and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive,inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents,or as a platform for studying cardiomyocyte biology.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Setty M et al. (JAN 2012)
Molecular systems biology 8 605
Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma.
Large-scale cancer genomics projects are profiling hundreds of tumors at multiple molecular layers,including copy number,mRNA and miRNA expression,but the mechanistic relationships between these layers are often excluded from computational models. We developed a supervised learning framework for integrating molecular profiles with regulatory sequence information to reveal regulatory programs in cancer,including miRNA-mediated regulation. We applied our approach to 320 glioblastoma profiles and identified key miRNAs and transcription factors as common or subtype-specific drivers of expression changes. We confirmed that predicted gene expression signatures for proneural subtype regulators were consistent with in vivo expression changes in a PDGF-driven mouse model. We tested two predicted proneural drivers,miR-124 and miR-132,both underexpressed in proneural tumors,by overexpression in neurospheres and observed a partial reversal of corresponding tumor expression changes. Computationally dissecting the role of miRNAs in cancer may ultimately lead to small RNA therapeutics tailored to subtype or individual.
View Publication