Doran MR et al. (DEC 2009)
Biomaterials 30 34 6614--6620
Controlled presentation of recombinant proteins via a zinc-binding peptide-linker in two and three dimensional formats
The presentation of proteins on surfaces is fundamental to numerous cell culture and tissue engineering applications. While a number of physisorption and cross-linking methods exist to facilitate this process,few avoid denaturation of proteins or allow control over protein orientation,both of which are critical to the functionality of many signal proteins and ligands. Often recombinant protein sequences include a poly-histidine tag to facilitate purification. We utilize this sequence to anchor proteins to biosurfaces via a peptide bonded to the surface which conjugates with the poly-histidine tag in the presence of zinc rather than nickel,which is more traditionally used to conjugate poly-histidine tags to surfaces. We demonstrate that this strategy enables the display of proteins on 2D and 3D surfaces without compromising protein function through direct cross-linking or physisorption.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Perez LE et al. (MAR 2010)
European journal of haematology 84 3 212--22
Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma.
OBJECTIVES: Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here,we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS: MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL),bortezomib (10 nm) or both. RESULTS: Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP,induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS: These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells.
View Publication
Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host.
Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Previous studies have demonstrated major alterations in its transcriptional profile as this microorganism enters the hostile environment of the human host. To assess the role of chromatin remodeling in host-induced transcriptional responses,we identified the C. neoformans Gcn5 histone acetyltransferase and demonstrated its function by complementation studies of Saccharomyces cerevisiae. The C. neoformans gcn5Delta mutant strain has defects in high-temperature growth and capsule attachment to the cell surface,in addition to increased sensitivity to FK506 and oxidative stress. Treatment of wild-type cells with the histone acetyltransferase inhibitor garcinol mimics cellular effects of the gcn5Delta mutation. Gcn5 regulates the expression of many genes that are important in responding to the specific environmental conditions encountered by C. neoformans inside the host. Accordingly,the gcn5Delta mutant is avirulent in animal models of cryptococcosis. Our study demonstrates the importance of chromatin remodeling by the conserved histone acetyltransferase Gcn5 in regulating the expression of specific genes that allow C. neoformans to respond appropriately to the human host.
View Publication
产品类型:
产品号#:
72452
产品名:
Garcinol
Boissier S et al. (JUN 2000)
Cancer research 60 11 2949--54
Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases.
The molecular mechanisms by which tumor cells metastasize to bone are likely to involve invasion,cell adhesion to bone,and the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are,therefore,used in the treatment of patients with osteolytic metastases. However,an added beneficial effect of BPs may be direct antitumor activity. We previously reported that BPs inhibit breast and prostate carcinoma cell adhesion to bone (Boissier et al.,Cancer Res.,57: 3890-3894,1997). Here,we provided evidence that BP pretreatment of breast and prostate carcinoma cells inhibited tumor cell invasion in a dose-dependent manner. The order of potency for four BPs in inhibiting tumor cell invasion was: zoledronate textgreater ibandronate textgreater NE-10244 (active pyridinium analogue of risedronate) textgreater clodronate. In addition,NE-58051 (the inactive pyridylpropylidene analogue of risedronate) had no inhibitory effect,whereas NE-10790 (a phosphonocarboxylate analogue of risedronate in which one of the phosphonate groups is substituted by a carboxyl group) inhibited tumor cell invasion to an extent similar to that observed with NE-10244,indicating that the inhibitory activity of BPs on tumor cells involved the R2 chain of the molecule. BPs did not induce apoptosis in tumor cells,nor did they inhibit tumor cell migration at concentrations that did inhibit tumor cell invasion. However,although BPs did not interfere with the production of matrix metalloproteinases (MMPs) by tumor cells,they inhibited their proteolytic activity. The inhibitory effect of BPs on MMP activity was completely reversed in the presence of an excess of zinc. In addition,NE-10790 did not inhibit MMP activity,suggesting that phosphonate groups of BPs are responsible for the chelation of zinc and the subsequent inhibition of MMP activity. In conclusion,our results provide evidence for a direct cellular effect of BPs in preventing tumor cell invasion and an inhibitory effect of BPs on the proteolytic activity of MMPs through zinc chelation. These results suggest,therefore,that BPs may be useful agents for the prophylactic treatment of patients with cancers that are known to preferentially metastasize to bone.
View Publication
产品类型:
产品号#:
73572
产品名:
Zoledronic Acid (Hydrate)
Lin HZ et al. ( 2000)
Nature medicine 6 9 998--1003
Metformin reverses fatty liver disease in obese, leptin-deficient mice.
There is no known treatment for fatty liver,a ubiquitous cause of chronic liver disease. However,because it is associated with hyperinsulinemia and insulin-resistance,insulin-sensitizing agents might be beneficial. To evaluate this possibility,insulin-resistant ob/ob mice with fatty livers were treated with metformin,an agent that improves hepatic insulin-resistance. Metformin improved fatty liver disease,reversing hepatomegaly,steatosis and aminotransferase abnormalities. The therapeutic mechanism likely involves inhibited hepatic expression of tumor necrosis factor (TNF) alpha and TNF-inducible factors that promote hepatic lipid accumulation and ATP depletion. These findings suggest a mechanism of action for metformin and identify novel therapeutic targets in insulin-resistant states.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
Masuda A et al. (JUL 2002)
Bioscience,biotechnology,and biochemistry 66 7 1615--7
Binding selectivity of conformationally restricted analogues of (-)-indolactam-V to the C1 domains of protein kinase C isozymes.
Two conformationally restricted analogues of (-)-indolactam-V (1) (cis and trans amides) were examined for their binding selectivity to the synthetic C1 peptides of all protein kinase C (PKC) isozymes. Although the binding constants of the cis amide-restricted analogue (2) were equal to those of 1,the trans amide-restricted analogue (3) bound significantly only to the novel PKC (delta,epsilon,eta,theta) isozymes.
View Publication
产品类型:
产品号#:
72312
72314
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
Rawat VPS et al. (JAN 2004)
Proceedings of the National Academy of Sciences of the United States of America 101 3 817--22
Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia.
Creation of fusion genes by balanced chromosomal translocations is one of the hallmarks of acute myeloid leukemia (AML) and is considered one of the key leukemogenic events in this disease. In t(12;13)(p13;q12) AML,ectopic expression of the homeobox gene CDX2 was detected in addition to expression of the ETV6-CDX2 fusion gene,generated by the chromosomal translocation. Here we show in a murine model of t(12;13)(p13;q12) AML that myeloid leukemogenesis is induced by the ectopic expression of CDX2 and not by the ETV6-CDX2 chimeric gene. Mice transplanted with bone marrow cells retrovirally engineered to express Cdx2 rapidly succumbed to fatal and transplantable AML. The transforming capacity of Cdx2 depended on an intact homeodomain and the N-terminal transactivation domain. Transplantation of bone marrow cells expressing ETV6-CDX2 failed to induce leukemia. Furthermore,coexpression of ETV6-CDX2 and Cdx2 in bone marrow cells did not accelerate the course of disease in transplanted mice compared to Cdx2 alone. These data demonstrate that activation of a protooncogene by a balanced chromosomal translocation can be the pivotal leukemogenic event in AML,characterized by the expression of a leukemia-specific fusion gene. Furthermore,these findings link protooncogene activation to myeloid leukemogenesis,an oncogenic mechanism so far associated mainly with lymphoid leukemias and lymphomas.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Wang R et al. (FEB 1992)
Development (Cambridge,England) 114 2 303--16
Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development.
Murine embryonic stem cells can differentiate in vitro to form cystic embryoid bodies (CEB) that contain different structures and cell types. The blood islands are one such structure that consist of immature hematopoietic cells surrounded by endothelial cells,the first identifiable vascular cells. CEBs differentiated in vitro developed blood islands initially,and subsequently these blood islands matured to form vascular channels containing hematopoietic cells. Phase contrast microscopy demonstrated the presence of channels in mature CEBs grown in suspension culture,and high resolution light and electron microscopy showed that the cells lining these channels were endothelial cells. The channels appeared less organized than the vasculature of the mature yolk sac. The hematopoietic cells were occasionally seen 'flowing' through the CEB channels,although their numbers were reduced relative to the yolk sac. Analysis of primary CEB cultures showed the presence of cells with two characteristics of endothelial cells: approximately 30% of the cells labelled with fluorescent acetylated low density lipoprotein and a small number of cells were positive for von Willebrand's factor by immunostaining. Thus we conclude that a primitive vasculature forms in CEBs differentiated in vitro,and that not only primary differentiation of endothelial cells but also some aspects of vascular maturation are intrinsic to this cell culture system. CEBs are therefore a useful model for the study of developmental blood vessel formation.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Chen Y-X et al. (JAN 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 4 1018--23
The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression.
Menin is the product of the tumor suppressor gene Men1 that is mutated in the inherited tumor syndrome multiple endocrine neoplasia type 1 (MEN1). Menin has been shown to interact with SET-1 domain-containing histone 3 lysine 4 (H3K4) methyltransferases including mixed lineage leukemia proteins to regulate homeobox (Hox) gene expression in vitro. Using conditional Men1 knockout mice,we have investigated the requirement for menin in hematopoiesis and myeloid transformation. Men1 excision causes reduction of Hoxa9 expression,colony formation by hematopoietic progenitors,and the peripheral white blood cell count. Menin directly activates Hoxa9 expression,at least in part,by binding to the Hoxa9 locus,facilitating methylation of H3K4,and recruiting the methylated H3K4 binding protein chd1 to the locus. Consistent with signaling downstream of menin,ectopic expression of both Hoxa9 and Meis1 rescues colony formation defects in Men1-excised bone marrow. Moreover,Men1 excision also suppresses proliferation of leukemogenic mixed lineage leukemia-AF9 fusion-protein-transformed myeloid cells and Hoxa9 expression. These studies uncover an important role for menin in both normal hematopoiesis and myeloid transformation and provide a mechanistic understanding of menin's function in these processes that may be used for therapy.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Fitzgerald DP et al. (OCT 2006)
Neuroscience 142 3 703--16
Characterization of neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain.
Many studies have demonstrated a role for netrin-1-deleted in colorectal cancer (DCC) interactions in both axon guidance and neuronal migration. Neogenin,a member of the DCC receptor family,has recently been shown to be a chemorepulsive axon guidance receptor for the repulsive guidance molecule (RGM) family of guidance cues [Rajagopalan S,Deitinghoff L,Davis D,Conrad S,Skutella T,Chedotal A,Mueller B,Strittmatter S (2004) Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol 6:755-762]. Here we show that neogenin is present on neural progenitors,including neurogenic radial glia,in the embryonic mouse forebrain suggesting that neogenin expression is a hallmark of neural progenitor populations. Neogenin-positive progenitors were isolated from embryonic day 14.5 forebrain using flow cytometry and cultured as neurospheres. Neogenin-positive progenitors gave rise to neurospheres displaying a high proliferative and neurogenic potential. In contrast,neogenin-negative forebrain cells did not produce long-term neurosphere cultures and did not possess a significant neurogenic potential. These observations argue strongly for a role for neogenin in neural progenitor biology. In addition,we also observed neogenin on parvalbumin- and calbindin-positive interneuron neuroblasts that were migrating through the medial and lateral ganglionic eminences,suggesting a role for neogenin in tangential migration. Therefore,neogenin may be a multi-functional receptor regulating both progenitor activity and neuroblast migration in the embryonic forebrain.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
Jenkins RB et al. (OCT 2006)
Cancer research 66 20 9852--61
A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms,suggesting a t(1;19)(q10;p10). Using stem cell medium,we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture,one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas,the prevalence of fusion was 81%. Among NCCTG patients,CEP1/19p12 fusion prevalence was 55%,47%,and 0% among the oligodendrogliomas,mixed oligoastrocytomas,and astrocytomas,respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P textless 0.001,chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion,the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Cemerski S et al. (MAR 2007)
Immunity 26 3 345--55
The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse.
T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
View Publication