Akizu N et al. (MAY 2015)
Nature genetics 47 5 528--34
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability,with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia,coarsened facial features and intellectual disability,due to truncating mutations in the sorting nexin gene SNX14,encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate,a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma,accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang P et al. (DEC 2015)
Molecular autism 6 1 55
CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment.
BACKGROUND Disruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions,and its targets are enriched with ASD-associated genes. METHODS To further understand the molecular links between CHD8 functions and ASD,we have applied the CRISPR/Cas9 technology to knockout one copy of CHD8 in induced pluripotent stem cells (iPSCs) to better mimic the loss-of-function status that would exist in the developing human embryo prior to neuronal differentiation. We then carried out transcriptomic and bioinformatic analyses of neural progenitors and neurons derived from the CHD8 mutant iPSCs. RESULTS Transcriptome profiling revealed that CHD8 hemizygosity (CHD8 (+/-)) affected the expression of several thousands of genes in neural progenitors and early differentiating neurons. The differentially expressed genes were enriched for functions of neural development,$$-catenin/Wnt signaling,extracellular matrix,and skeletal system development. They also exhibited significant overlap with genes previously associated with autism and schizophrenia,as well as the downstream transcriptional targets of multiple genes implicated in autism. Providing important insight into how CHD8 mutations might give rise to macrocephaly,we found that seven of the twelve genes associated with human brain volume or head size by genome-wide association studies (e.g.,HGMA2) were dysregulated in CHD8 (+/-) neural progenitors or neurons. CONCLUSIONS We have established a renewable source of CHD8 (+/-) iPSC lines that would be valuable for investigating the molecular and cellular functions of CHD8. Transcriptomic profiling showed that CHD8 regulates multiple genes implicated in ASD pathogenesis and genes associated with brain volume.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Dafinca R et al. (APR 2016)
Stem cells (Dayton,Ohio) 34 8 2016
C9orf72 Hexanucleotide Expansions are Associated with Altered ER Calcium Homeostasis and Stress Granule Formation in iPSC-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS),accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions,differentiated these to functional motor and cortical neurons and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons,decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis,reduced levels of the anti-apoptotic protein Bcl-2,increased endoplasmic reticulum (ER) stress and reduced mitochondrial membrane potential. Furthermore,C9orf72 motor neurons,and also cortical neurons,show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats,which describes a novel pathogenic link between C9orf72 mutations,dysregulation of calcium signalling and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia (FTD). This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cindric Vranesic A et al. (MAY 2016)
Human Molecular Genetics May 11 ddw140
Characterization of SKAP/kinastrin isoforms: the N-terminus defines tissue specificity and Pontin binding
Small Kinetochore-Associated Protein (SKAP)/Kinastrin is a multifunctional protein with proposed roles in mitosis,apoptosis and cell migration. Exact mechanisms underlying its activities in these cellular processes are not completely understood. SKAP is predicted to have different isoforms,however,previous studies did not differentiate between them. Since distinct molecular architectures of protein isoforms often influence their localization and functions,this study aimed to examine the expression profile and functional differences between SKAP isoforms in human and mouse. Analyses of various human tissues and cells of different origin by RT-PCR,and by Western blotting and immunocytochemistry applying newly generated anti-SKAP monoclonal antibodies revealed that human SKAP exists in two protein isoforms: ubiquitously expressed SKAP16 and testis/sperm-specific SKAP1. In mouse,SKAP1 expression is detectable in testis at 4 weeks postnatally,when the first wave of spermatogenesis in mice is complete and the elongated spermatids are present in the testes. Furthermore,we identified Pontin as a new SKAP1 interaction partner. SKAP1 and Pontin co-localized in the flagellar region of human sperm suggesting a functional relevance for SKAP1-Pontin interaction in sperm motility. Since most previous studies on SKAP were performed with the testis-specific isoform SKAP1,our findings provide a new basis for future studies on the role of SKAP in both human somatic cells and male germ cells,including studies on male fertility.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Chalmers SA et al. (MAY 2016)
Scientific Reports 6 26164
Therapeutic Blockade of Immune Complex-Mediated Glomerulonephritis by Highly Selective Inhibition of Bruton's Tyrosine Kinase.
Lupus nephritis (LN) is a potentially dangerous end organ pathology that affects upwards of 60% of lupus patients. Bruton's tyrosine kinase (BTK) is important for B cell development,Fc receptor signaling,and macrophage polarization. In this study,we investigated the effects of a novel,highly selective and potent BTK inhibitor,BI-BTK-1,in an inducible model of LN in which mice receive nephrotoxic serum (NTS) containing anti-glomerular antibodies. Mice were treated once daily with vehicle alone or BI-BTK-1,either prophylactically or therapeutically. When compared with control treated mice,NTS-challenged mice treated prophylactically with BI-BTK-1 exhibited significantly attenuated kidney disease,which was dose dependent. BI-BTK-1 treatment resulted in decreased infiltrating IBA-1+ cells,as well as C3 deposition within the kidney. RT-PCR on whole kidney RNA and serum profiling indicated that BTK inhibition significantly decreased levels of LN-relevant inflammatory cytokines and chemokines. Renal RNA expression profiling by RNA-seq revealed that BI-BTK-1 dramatically modulated pathways related to inflammation and glomerular injury. Importantly,when administered therapeutically,BI-BTK-1 reversed established proteinuria and improved renal histopathology. Our results highlight the important role for BTK in the pathogenesis of immune complex-mediated nephritis,and BTK inhibition as a promising therapeutic target for LN.
View Publication
产品类型:
产品号#:
19359
19359RF
19054
19054RF
100-0697
产品名:
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
EasySep™人B细胞富集试剂盒
RoboSep™ 人B细胞富集试剂盒含滤芯吸头
EasySep™人单核细胞分选试剂盒
Varga E et al. (OCT 2016)
Stem cell research 17 3 531--533
Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance.
Peripheral blood was collected from a clinically characterized female Kleefstra syndrome patient with a heterozygous,de novo,premature termination codon (PTC) mutation (NM024757.4(EHMT1):c.3413GtextgreaterA; p.Trp1138Ter). Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the human OSKM transcription factors using the Sendai-virus (SeV) delivery system. The pluripotency of transgene-free iPSC line was verified by the expression of pluripotency-associated markers and by in vitro spontaneous differentiation towards the 3 germ layers. Furthermore,the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of Kleefstra syndrome,also for drug testing,early biomarker discovery and gene therapy studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
McCracken KW et al. ( 2017)
Nature 541 7636 182--187
Wnt/β-catenin promotes gastric fundus specification in mice and humans.
Despite the global prevalence of gastric disease,there are few adequate models in which to study the fundus epithelium of the human stomach. We differentiated human pluripotent stem cells (hPSCs) into gastric organoids containing fundic epithelium by first identifying and then recapitulating key events in embryonic fundus development. We found that disruption of Wnt/β-catenin signalling in mouse embryos led to conversion of fundic to antral epithelium,and that β-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). We then used hFGOs to identify temporally distinct roles for multiple signalling pathways in epithelial morphogenesis and differentiation of fundic cell types,including chief cells and functional parietal cells. hFGOs are a powerful model for studying the development of the human fundus and the molecular bases of human gastric physiology and pathophysiology,and also represent a new platform for drug discovery.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sancho R et al. (JUN 2013)
PLoS Biology 11 6 e1001586
Fbw7 Repression by Hes5 Creates a Feedback Loop That Modulates Notch-Mediated Intestinal and Neural Stem Cell Fate Decisions
FBW7 is a crucial component of an SCF-type E3 ubiquitin ligase,which mediates degradation of an array of different target proteins. The Fbw7 locus comprises three different isoforms,each with its own promoter and each suspected to have a distinct set of substrates. Most FBW7 targets have important functions in developmental processes and oncogenesis,including Notch proteins,which are functionally important substrates of SCF(Fbw7). Notch signalling controls a plethora of cell differentiation decisions in a wide range of species. A prominent role of this signalling pathway is that of mediating lateral inhibition,a process where exchange of signals that repress Notch ligand production amplifies initial differences in Notch activation levels between neighbouring cells,resulting in unequal cell differentiation decisions. Here we show that the downstream Notch signalling effector HES5 directly represses transcription of the E3 ligase Fbw7β,thereby directly bearing on the process of lateral inhibition. Fbw7(Δ/+) heterozygous mice showed haploinsufficiency for Notch degradation causing impaired intestinal progenitor cell and neural stem cell differentiation. Notably,concomitant inactivation of Hes5 rescued both phenotypes and restored normal stem cell differentiation potential. In silico modelling suggests that the NICD/HES5/FBW7β positive feedback loop underlies Fbw7 haploinsufficiency. Thus repression of Fbw7β transcription by Notch signalling is an essential mechanism that is coupled to and required for the correct specification of cell fates induced by lateral inhibition.
View Publication
产品类型:
产品号#:
05703
产品名:
NeuroCult™ 分化添加物 (小鼠&大鼠)
Scalzo-Inguanti K et al. (MAY 2017)
Journal of leukocyte biology
A neutralizing anti-G-CSFR antibody blocks G-CSF-induced neutrophilia without inducing neutropenia in nonhuman primates.
Neutrophils are the most abundant WBCs and have an essential role in the clearance of pathogens. Tight regulation of neutrophil numbers and their recruitment to sites of inflammation is critical in maintaining a balanced immune response. In various inflammatory conditions,such as rheumatoid arthritis,vasculitis,cystic fibrosis,and inflammatory bowel disease,increased serum G-CSF correlates with neutrophilia and enhanced neutrophil infiltration into inflamed tissues. We describe a fully human therapeutic anti-G-CSFR antibody (CSL324) that is safe and well tolerated when administered via i.v. infusion to cynomolgus macaques. CSL324 was effective in controlling G-CSF-mediated neutrophilia when administered either before or after G-CSF. A single ascending-dose study showed CSL324 did not alter steady-state neutrophil numbers,even at doses sufficient to completely prevent G-CSF-mediated neutrophilia. Weekly infusions of CSL324 (%10 mg/kg) for 3 wk completely neutralized G-CSF-mediated pSTAT3 phosphorylation without neutropenia. Moreover,repeat dosing up to 100 mg/kg for 12 wk did not result in neutropenia at any point,including the 12-wk follow-up after the last infusion. In addition,CSL324 had no observable effect on basic neutrophil functions,such as phagocytosis and oxidative burst. These data suggest that targeting G-CSFR may provide a safe and effective means of controlling G-CSF-mediated neutrophilia as observed in various inflammatory diseases.
View Publication
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However,the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and the subsequent changes in synapse morphology and efficacy remain unknown. We demonstrate that the intracellular cadherin binding protein δ-catenin is transiently palmitoylated by DHHC5 after enhanced synaptic activity and that palmitoylation increases δ-catenin-cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses and the enlargement of postsynaptic spines,as well as the insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in miniature excitatory postsynaptic current amplitude. Notably,context-dependent fear conditioning in mice resulted in increased δ-catenin palmitoylation,as well as increased δ-catenin-cadherin associations at hippocampal synapses. Together these findings suggest a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules,synapse structure and receptor localization that are involved in memory formation.
View Publication
产品类型:
产品号#:
05711
100-1281
产品名:
NeuroCult™ SM1 神经添加物
NeuroCult™ SM1 神经添加物
Gao C et al. (APR 2015)
Neurochemical Research 40 4 818--828
MCT4-Mediated Expression of EAAT1 is Involved in the Resistance to Hypoxia Injury in AstrocyteNeuron co-Cultures
Hypoxic stressors contribute to neuronal death in many brain diseases. Astrocyte processes surround most neurons and are therefore anatomically well-positioned to shield them from hypoxic injury. Excitatory amino acid transporters (EAATs),represent the sole mechanism of active reuptake of glutamate into the astrocytes and neurons and are essential to dampen neuronal excitation following glutamate release at synapses. Glutamate clearance impairment from any factors is bound to result in an increase in hypoxic neuronal injury. The brain energy metabolism under hypoxic conditions depends on monocarboxylate transporters (MCTs) that are expressed by neurons and glia. Previous co-immunoprecipitation experiments revealed that MCT4 directly modulate EAAT1 in astrocytes. The reduction in both surface proteins may act synergistically to induce neuronal hyperexcitability and excitotoxicity. Therefore we hypothesized that astrocytes would respond to hypoxic conditions by enhancing their expression of MCT4 and EAAT1,which,in turn,would enable them to better support neurons to survive lethal hypoxia injury. An oxygen deprivation (OD) protocol was used in primary cultures of neurons,astrocytes,and astrocytes-neurons derived from rat hippocampus,with or without MCT4-targeted short hairpin RNA (shRNA) transfection. Cell survival,expression of MCT4,EAAT1,glial fibrillary acidic protein and neuronal nuclear antigen were evaluated. OD resulted in significant cell death in neuronal cultures and up-regulation of MCT4,EAAT1 expression respectively in primary cell cultures,but no injury in neuron-astrocyte co-cultures and astrocyte cultures. However,neuronal cell death in co-cultures was increased exposure to shRNA-MCT4 prior to OD. These findings demonstrate that the MCT4-mediated expression of EAAT1 is involved in the resistance to hypoxia injury in astrocyte-neuron co-cultures.
View Publication