A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production
Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However,scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard,suspension cultures are a viable alternative,because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However,the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here,we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. ?? 2014 The Authors.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wognum AW et al. (OCT 1990)
Blood 76 7 1323--9
A specific in vitro bioassay for measuring erythropoietin levels in human serum and plasma.
The accurate measurement of biologically active erythropoietin (Ep) in human serum and plasma using present in vivo and in vitro bioassays is difficult because of the presence of both inhibitors and non-Ep stimulators of erythropoiesis. We have developed a simple procedure to quantitatively purify Ep from serum and plasma for subsequent testing in the phenylhydrazine-treated mouse spleen cell assay. The method involves absorption of Ep to an immobilized high-affinity anti-Ep monoclonal antibody and acid elution of the antibody-bound material. After neutralization,the eluted EP is then tested directly in the in vitro bioassay without interference by other serum proteins. By using magnetic beads as a solid support for the antibody,washing and elution steps can be performed rapidly and efficiently. Recoveries of Ep after this procedure show very little sample-to-sample variation and are consistently between 45% and 55%,which is close to the maximum binding expected for the anti-Ep antibody. Coupled with the 7.4-fold concentration that this procedure affords,there is an overall increase in sensitivity of three- to fourfold,which makes this assay suitable for accurately measuring Ep levels in patients with below-average titers. Results with this magnetic bead assay indicate that accurate and reproducible estimates for Ep levels in the serum and plasma from healthy donors as well as from patients with hematologic disorders can be obtained. Titers of biologically active Ep in the sera from a group of patients with either leukemia or lymphoma were found to be elevated,and the values correlated well with titers of immunoreactive Ep measured in the Ep radioimmunoassay. Because of its specificity and high sensitivity,the magnetic bead assay is a valuable alternative to immunoassays for the measurement of elevated,normal,and even subnormal Ep levels in human serum and plasma.
View Publication
产品类型:
产品号#:
01630
产品名:
促红细胞生成素(EPO) ELISA Kit
文献
Vallier L (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 690 57--66
Serum-free and feeder-free culture conditions for human embryonic stem cells.
Human embryonic stem cells (hESCs) are pluripotent cells derived from the embryo at the blastocyst stage. Their embryonic origin confers upon them the capacity to proliferate indefinitely in vitro while maintaining the capacity to differentiate into a large variety of cell types. Based on these properties of self-renewal and pluripotency,hESCs represent a unique source to generate a large quantity of certain specialized cell types with clinical interest for transplantation-based therapy. However,hESCs are usually grown in culture conditions using fetal bovine serum and mouse embryonic fibroblasts,two components that are not compatible with clinical applications. Consequently,the possibility to expand hESCs in serum-free and in feeder-free culture conditions is becoming a major challenge to deliver the clinical promises of hESCs. Here,we describe the basic principles of growing hESCs in a chemically defined medium (CDM) devoid of serum and feeders.
View Publication
产品类型:
产品号#:
产品名:
文献
Chase LG and Firpo MT (AUG 2007)
Current opinion in chemical biology 11 4 367--72
Development of serum-free culture systems for human embryonic stem cells.
Human embryonic stem cells,because of their unique combination of long-term self-renewal properties and pluripotency,are providing new avenues of investigation of stem cell biology and human development and show promise in providing a new source of human cells for transplantation therapies and pharmaceutical testing. Current methods of propagating these cells using combinations of mouse fibroblast feeder cultures and bovine serum components are inexpensive and,in general,useful. However,the systematic investigation of the regulation of self-renewal and the production of safer sources of cells for transplantation depends on the elimination of animal products and the use of defined culture conditions. Both goals are served by the development of serum-free culture methods for human embryonic stem cells.
View Publication
Chen X et al. (NOV 2010)
Stem cells and development 19 11 1781--1792
Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media.
Metabolic studies of human embryonic stem cells (hESCs) can provide important information for stem cell bioprocessing. To this end,we have examined growth and metabolism of hESCs in both traditional 2-dimensional (2D) colony cultures and 3-dimensional microcarrier cultures using a conditioned medium and 3 serum-free media. The 2D colony cultures plateaued at cell densities of 1.1-1.5 × 10�?� cells/mL at day 6 due to surface limitation. Microcarrier cultures achieved 1.5-2 × 10�?� cells/mL on days 8-10 before reaching a plateau; this growth arrest was not due to surface limitation,but probably due to metabolic limitations. Metabolic analysis of the cultures showed that amino acids (including glutamine) and glucose are in excess and are not limiting cell growth; on the other hand,the high levels of waste products (25 mM lactate and 0.8 mM ammonium) and low pH (6.6) obtained at the last stages of cell propagation could be the causes for growth arrest. hESCs cultured in media supplemented with lactate (up to 28 mM) showed reduced cell growth,whereas ammonium (up to 5 mM) had no effect. Lactate and,to a lesser extent,ammonia affected pluripotency as reflected by the decreasing population of cells expressing pluripotent marker TRA-1-60. Feeding hESC cultures with low concentrations of glucose resulted in lower lactate levels (∼10%) and a higher pH level of 6.7,which leads to a 40% increase in cell density. We conclude that the high lactate levels and the low pH during the last stages of high-density hESC culture may limit cell growth and affect pluripotency. To overcome this limitation,a controlled feed of low levels of glucose and online control of pH can be used.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gentry T et al. (JAN 2007)
Cytotherapy 9 3 259--74
Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy.
BACKGROUND: ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD: We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br),and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations),to develop into several cell lineages in culture. RESULTS: The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD,n=30) nucleated cells and was enriched in cells expressing CD34,CD117,CD105,CD127,CD133 and CD166,and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells,and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes,osteoblasts and chondrocytes. DISCUSSION: Hematopoietic,endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.
View Publication