Telomere dysfunction-induced foci arise with the onset of telomeric deletions and complex chromosomal aberrations in resistant chronic lymphocytic leukemia cells.
In somatic cells,eroded telomeres can induce DNA double-strand break signaling,leading to a form of replicative senescence or apoptosis,both of which are barriers to tumorigenesis. However,cancer cells might display telomere dysfunctions which in conjunction with defects in DNA repair and apoptosis,enables them to circumvent these pathways. Chronic lymphocytic leukemia (CLL) cells exhibit telomere dysfunction,and a subset of these cells are resistant to DNA damage-induced apoptosis and display short telomeres. We show here that these cells exhibit significant resection of their protective telomeric 3' single-stranded overhangs and an increased number of telomere-induced foci containing gammaH2AX and 53BP1. Chromatin immunoprecipitation and immunofluorescence experiments demonstrated increased levels of telomeric Ku70 and phospho-S2056-DNA-PKcs,2 essential components of the mammalian nonhomologous end-joining DNA repair system. Notably,these CLL cells display deletions of telomeric signals on one or 2 chromatids in parallel with 11q22 deletions,or with 13q14 deletions associated with another chromosomal aberration or with a complex karyotype. Taken together,our results indicate that a subset of CLL cells from patients with an unfavorable clinical outcome harbor a novel type of chromosomal aberration resulting from telomere dysfunction.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Irish JM et al. (MAR 2007)
Blood 109 6 2589--96
Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53.
Loss or mutation of the TP53 tumor suppressor gene is not commonly observed in acute myeloid leukemia (AML),suggesting that there is an alternate route for cell transformation. We investigated the hypothesis that previously observed Bcl-2 family member overexpression suppresses wild-type p53 activity in AML. We demonstrate that wild-type p53 protein is expressed in primary leukemic blasts from patients with de novo AML using 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and phospho-specific flow cytometry. We found that p53 was heterogeneously expressed and phosphorylated in AML patient samples and could accumulate following DNA damage. Overexpression of antiapoptosis protein Bcl-2 in AML cells was directly correlated with p53 expression and phosphorylation on serine residues 15,46,and 392. Within those patients with the highest levels of Bcl-2 expression,we identified a mutation in FLT3 that duplicated phosphorylation site Y591. The presence of this mutation correlated with greater than normal Bcl-2 expression and with previously observed profiles of potentiated STAT and MAPK signaling. These results support the hypothesis that Flt3-mediated signaling in AML enables accumulation of Bcl-2 and maintains a downstream block to p53 pathway apoptosis. Bcl-2 inhibition might therefore improve the efficacy of existing AML therapies by inactivating this suppression of wild-type p53 activity.
View Publication
产品类型:
产品号#:
09850
产品名:
Ketola K et al. (DEC 2010)
Molecular cancer therapeutics 9 12 3175--85
Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells.
Current treatment options for advanced and hormone refractory prostate cancer are limited and responses to commonly used androgen pathway inhibitors are often unsatisfactory. Our recent results indicated that sodium ionophore monensin is one of the most potent and cancer-specific inhibitors in a systematic sensitivity testing of most known drugs and drug-like molecules in a panel of prostate cancer cell models. Because monensin has been extensively used in veterinary applications to build muscle mass in cattle,the link to prostate cancer and androgen signaling was particularly interesting. Here,we showed that monensin effects at nanomolar concentrations are linked to induction of apoptosis and potent reduction of androgen receptor mRNA and protein in prostate cancer cells. Monensin also elevated intracellular oxidative stress in prostate cancer cells as evidenced by increased generation of intracellular reactive oxygen species and by induction of a transcriptional profile characteristic of an oxidative stress response. Importantly,the antiproliferative effects of monensin were potentiated by combinatorial treatment with the antiandrogens and antagonized by antioxidant vitamin C. Taken together,our results suggest monensin as a potential well-tolerated,in vivo compatible drug with strong proapoptotic effects in prostate cancer cells,and synergistic effects with antiandrogens. Moreover,our data suggest a general strategy by which the effects of antiandrogens could be enhanced by combinatorial administration with agents that increase oxidative stress in prostate cancer cells.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
A. Soler et al. (OCT 2018)
Scientific reports 8 1 15931
Autologous cell lines from circulating colon cancer cells captured from sequential liquid biopsies as model to study therapy-driven tumor changes.
Circulating tumor cells (CTCs) are important clinical indicators for prognosis and treatment efficacy. However,CTC investigation is hampered by their low number,making the establishment of permanent CTC lines very challenging. We derived and characterized nine CTC lines using blood samples from a patient with metastatic colorectal cancer collected before and after chemotherapy and targeted therapy,and during cancer progression. These cell lines displayed an intermediate epithelial/mesenchymal phenotype,stem-cell like characteristics,angiogenesis potential,an osteomimetic signature and the capacity to escape from the immune system. Moreover,they showed changes in mRNA and protein expression (e.g.,DEFA6,ABCB1 and GAL),whereas analysis of chromosomal copy number aberrations revealed no significant variation over time. These data indicate that although CTC lines derived from sequential blood samples during therapy have common traits,treatment-resistant CTC clones with distinct phenotypic characteristics are selected over time.
View Publication
产品类型:
产品号#:
产品名:
I. Gonz\'alez-Mariscal et al. (jan 2022)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 145 112361
Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage.
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies,including autoimmune diseases. However,its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week,following STZ challenge,and euthanized 1 week later. Blood,pancreas,pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice,treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly,Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice,Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-$\kappa$B and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether,Abn-CBD reduces circulating and intra-islet inflammation,preserving islets,thus delaying the progression of insulitis. Hence,Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.
View Publication
产品类型:
产品号#:
18000
19852
19852RF
产品名:
EasySep™磁极
EasySep™小鼠CD4+ T细胞分选试剂盒
RoboSep™ 小鼠CD4+ T细胞分选试剂盒
A. A. Chimote et al. ( 2020)
Frontiers in pharmacology 11 143
A Compartmentalized Reduction in Membrane-Proximal Calmodulin Reduces the Immune Surveillance Capabilities of CD8+ T Cells in Head and Neck Cancer.
The limited ability of cytotoxic CD8+ T cells to infiltrate solid tumors and function within the tumor microenvironment presents a major roadblock to effective immunotherapy. Ion channels and Ca2+-dependent signaling events control the activity of T cells and are implicated in the failure of immune surveillance in cancer. Reduced KCa3.1 channel activity mediates the heightened inhibitory effect of adenosine on the chemotaxis of circulating T cells from head and neck squamous cell carcinoma (HNSCC) patients. Herein,we conducted experiments that elucidate the mechanisms of KCa3.1 dysfunction and impaired chemotaxis in HNSCC CD8+ T cells. The Ca2+ sensor calmodulin (CaM) controls multiple cellular functions including KCa3.1 activation. Our data showed that CaM expression is lower in HNSCC than healthy donor (HD) T cells. This reduction was due to an intrinsic decrease in the genes encoding CaM combined to the failure of HNSCC T cells to upregulate CaM upon activation. Furthermore,the reduction in CaM was confined to the plasma membrane and resulted in decreased CaM-KCa3.1 association and KCa3.1 activity (which was rescued by the delivery of CaM). IFN$\gamma$ production,also Ca2+- and CaM-dependent,was instead not reduced in HNSCC T cells,which maintained intact cytoplasmic CaM and Ca2+ fluxing ability. Knockdown of CaM in HD T cells decreased KCa3.1 activity,but not IFN$\gamma$ production,and reduced their chemotaxis in the presence of adenosine,thus recapitulating HNSCC T cell dysfunction. Activation of KCa3.1 with 1-EBIO restored the ability of CaM knockdown HD T cells to chemotax in the presence of adenosine. Additionally,1-EBIO enhanced INF$\gamma$ production. Our data showed a localized downregulation of membrane-proximal CaM that suppressed KCa3.1 activity in HNSCC circulating T cells and limited their ability to infiltrate adenosine-rich tumor-like microenvironments. Furthermore,they indicate that KCa3.1 activators could be used as positive CD8+ T cell modulators in cancers.
View Publication
产品类型:
产品号#:
19053
19053RF
产品名:
EasySep™人CD8+ T细胞富集试剂盒
RoboSep™ 人CD8+ T细胞富集试剂盒含滤芯吸头
M. E. Stremska et al. (may 2019)
Journal of autoimmunity
IL233, an IL-2-IL-33 hybrid cytokine induces prolonged remission of mouse lupus nephritis by targeting Treg cells as a single therapeutic agent.
Lupus glomerulonephritis (GN) is an autoimmune disease characterized by immune complex-deposition,complement activation and glomerular inflammation. In lupus-prone NZM2328 mice,the occurrence of lupus GN was accompanied by a decrease in Treg cells and an increase in proinflammatory cytokine-producing T cells. Because IL-33 in addition to IL-2 has been shown to be important for Treg cell proliferation and ST2 (IL-33 receptor) positive Treg cells are more potent in suppressor activity,a hybrid cytokine with active domains of IL-2 and IL-33 was generated to target the ST2+ Treg cells as a therapeutic agent to treat lupus GN. Three mouse models were used: spontaneous and Ad-IFNalpha- accelerated lupus GN in NZM2328 and the lymphoproliferative autoimmune GN in MRL/lpr mice. Daily injections of IL233 for 5 days prevented Ad-IFNalpha-induced lupus GN and induced remission of spontaneous lupus GN. The remission was permanent in that no relapses were detected. The remission was accompanied by persistent elevation of Treg cells in the renal lymph nodes. IL233 is more potent than IL-2 and IL-33 either singly or in combination in the treatment of lupus GN. The results of this study support the thesis that IL233 should be considered as a novel agent for treating lupus GN.
View Publication
产品类型:
产品号#:
18783
18783RF
产品名:
EasySep™ 小鼠CD4+CD25+调节性T细胞分选试剂盒 II
RoboSep™ 小鼠CD4+CD25+调节性T细胞分选试剂盒II
Van VQ et al. (OCT 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 8 5204--8
Cutting edge: CD47 controls the in vivo proliferation and homeostasis of peripheral CD4+ CD25+ Foxp3+ regulatory T cells that express CD103.
Peripheral CD103(+)Foxp3(+) regulatory T cells (Tregs) can develop both from conventional naive T cells upon cognate Ag delivery under tolerogenic conditions and from thymic-derived,expanded/differentiated natural Tregs. We here show that CD47 expression,a marker of self on hematopoietic cells,selectively regulated CD103(+)Foxp3(+) Treg homeostasis at the steady state. First,the proportion of effector/memory-like (CD44(high)CD62L(low)) CD103(+)Foxp3(+) Tregs rapidly augmented with age in CD47-deficient mice (CD47(-/-)) as compared with age-matched control littermates. Yet,the percentage of quiescent (CD44(low)CD62L(high)) CD103(-)Foxp3(+) Tregs remained stable. Second,the increased proliferation rate (BrdU incorporation) observed within the CD47(-/-)Foxp3(+) Treg subpopulation was restricted to those Tregs expressing CD103. Third,CD47(-/-) Tregs maintained a normal suppressive function in vitro and in vivo and their increased proportion in old mice led to a decline of Ag-specific T cell responses. Thus,sustained CD47 expression throughout life is critical to avoid an excessive expansion of CD103(+) Tregs that may overwhelmingly inhibit Ag-specific T cell responses.
View Publication
产品类型:
产品号#:
19782
19792
产品名:
Barbui AM et al. (APR 2006)
Experimental hematology 34 4 475--85
Clinical grade expansion of CD45RA, CD45RO, and CD62L-positive T-cell lines from HLA-compatible donors: high cytotoxic potential against AML and ALL cells.
OBJECTIVE: Identification of a clinical grade method for the ex vivo generation of donor-derived T cells cytotoxic against both myeloid and lymphoblastic cells still remains elusive. We investigated rapid generation and expansion of donor derived-allogeneic T-cell lines cytotoxic against patient leukemic cells. MATERIALS AND METHODS: Acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts were cultured 5 days in Stem Span,granulocyte macrophage colony-stimulating factor,interleukin-4,and calcium ionophore. All B-precursor ALL (N22) and AML (N13),but not T-cell ALL (N3),differentiated into mature leukemia-derived antigen-presenting cells (LD-APC). All but one LD-APC generated cytotoxic T lymphocyte (CTL) from adult human leukocyte antigen (HLA)-identical (N8) or unrelated donors (N2). RESULTS: Upon in vitro culture,donor-derived CTL acquired a memory T phenotype,showing concomitant high CD45RA,CD45RO,CD62L expression. CD8(+) cells,but not CD4(+) cells,were granzyme,perforine,and interferon-gamma-positive. Pooled CD4(+) and CD8(+) cells were cytotoxic against leukemic blasts (32%,30:1 E:T ratio),but not against autologous or patient-derived phytohemagglutinin blasts. LD-APC from five ALL patients were used to generate CTL from cord blood. A mixed population of CD4(+) and CD8(+) cells was documented in 54% of wells. T cells acquired classical effector memory phenotype and showed a higher cytotoxicity against leukemia blasts (47%,1:1 E:T ratio). Adult and cord blood CTL showed a skewing from a complete T-cell receptor repertoire to an oligo-clonal/clonal pattern. CONCLUSIONS: Availability of these cells should allow clinical trials for salvage treatment of leukemia patients relapsing after allogeneic stem cell transplantation.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Hisatomi T et al. (MAR 2011)
Blood 117 13 3575--84
NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase IIalpha and DNA-dependent protein kinase.
Adult T-cell leukemia-lymphoma (ATL) is an aggressive disease,incurable by standard chemotherapy. NK314,a new anticancer agent possessing inhibitory activity specific for topoisomerase IIα (Top2α),inhibited the growth of various ATL cell lines (50% inhibitory concentration: 23-70nM) with more potent activity than that of etoposide. In addition to the induction of DNA double-strand breaks by inhibition of Top2α,NK314 induced degradation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs),resulting in impaired DNA double-strand break repair. The contribution of DNA-PK to inhibition of cell growth was affirmed by the following results: NK314 inhibited cell growth of M059J (a DNA-PKcs-deficient cell line) and M059K (a cell line with DNA-PKcs present) with the same potency,whereas etoposide exhibited weak inhibition of cell growth with M059K cells. A DNA-PK specific inhibitor,NU7026,enhanced inhibitory activity of etoposide on M059K as well as on ATL cells. These results suggest that NK314 is a dual inhibitor of Top2α and DNA-PK. Because ATL cells express a high amount of DNA-PKcs,NK314 as a dual molecular targeting anticancer agent is a potential therapeutic tool for treatment of ATL.
View Publication
产品类型:
产品号#:
04437
04447
产品名:
MethoCult™表达
MethoCult™表达
D. Gonz\'alez-Serna et al. (jun 2023)
Arthritis & rheumatology (Hoboken,N.J.) 75 6 1007--1020
Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes.
OBJECTIVE Systemic sclerosis (SSc) is a complex autoimmune disease with a strong genetic component. However,most of the genes associated with the disease are still unknown because associated variants affect mostly noncoding intergenic elements of the genome. We used functional genomics to translate the genetic findings into a better understanding of the disease. METHODS Promoter capture Hi-C and RNA-sequencing experiments were performed in CD4+ T cells and CD14+ monocytes from 10 SSc patients and 5 healthy controls to link SSc-associated variants with their target genes,followed by differential expression and differential interaction analyses between cell types. RESULTS We linked SSc-associated loci to 39 new potential target genes and confirmed 7 previously known SSc-associated genes. We highlight novel causal genes,such as CXCR5,as the most probable candidate gene for the DDX6 locus. Some previously known SSc-associated genes,such as IRF8,STAT4,and CD247,showed cell type-specific interactions. We also identified 15 potential drug targets already in use in other similar immune-mediated diseases that could be repurposed for SSc treatment. Furthermore,we observed that interactions were directly correlated with the expression of important genes implicated in cell type-specific pathways and found evidence that chromatin conformation is associated with genotype. CONCLUSION Our study revealed potential causal genes for SSc-associated loci,some of them acting in a cell type-specific manner,suggesting novel biologic mechanisms that might mediate SSc pathogenesis.
View Publication
产品类型:
产品号#:
17858
17952
17858RF
100-0694
17952RF
100-0696
产品名:
EasySep™人CD14正选试剂盒II
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD14正选试剂盒II
EasySep™人CD14正选试剂盒II
RoboSep™ 人CD4+ T细胞分选试剂盒
EasySep™人CD4+ T细胞分离试剂盒
Kwon et al. (Feb 2025)
International Journal of Molecular Sciences 26 3
Therapeutic Potential of Adina rubella Hance Stem and Picroside III as a Differentiation Inducer in AML Cells via Mitochondrial ROS Accumulation
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block,highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant extracts. ARH stem promoted phenotypic differentiation in AML cells. In addition to its differentiation-inducing effects,ARH stem exhibited strong antileukemic activities,such as inhibiting cell proliferation,inducing cell death,and enhancing mitochondrial reactive oxygen species (mtROS) levels,the latter of which is critical for its differentiation-promoting activity. Comparative analysis with the extracts from other parts of the plant confirmed the superior efficacy of the stem extract because of its unique chemical composition. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry analysis identified Picroside III as a major active compound within the stem extract,capable of recapitulating ARH stem-induced differentiation and demonstrating significant antileukemic properties. These findings underscore the therapeutic potential of ARH stem and its active component,Picroside III,as promising agents for differentiation-based treatment strategies in AML.
View Publication