(Nov 2024)
International Journal of Molecular Sciences 25 22
Galectin-1 Induces the Production of Immune-Suppressive Cytokines in Human and Mouse T Cells
Galectin-1 is implicated in several pro-tumourigenic mechanisms and is considered immune-suppressive. The pharmacological inhibition of galectin-1 may be beneficial in cancers in which galectin-1 is overexpressed and driving cancer progression. This study aimed to further characterise the immunosuppressive cytokines influenced by galectin-1 in in vitro immune cell cultures and an in vivo inflammatory model using a recently discovered selective inhibitor of galectin-1,GB1908. To enable a translational approach and link mouse and human pharmacology,anti-CD3/anti-CD28 stimulated T cells cultured from human whole blood and mouse spleens were compared. For in vivo studies of T cell-mediated inflammation,the concanavalin-A (Con-A) mouse model was used to induce a T lymphocyte-driven acute liver injury phenotype. The inhibition of galectin-1 with GB1908 reduced IL-17A,IFNγ and TNFα in a concentration-dependent manner in both mouse and human T cells in vitro. The immunosuppressive cytokines measured in Con-A-treated mice were all upregulated compared to naïve mice. Subsequently,mice treated with GB1908 demonstrated a significant reduction in IL-17A,IFNγ,IL-6 and TNFα compared to vehicle-treated mice. In conclusion,galectin-1 induced the production of several important immune-suppressive cytokines from T cells in vitro and in vivo. This result suggests that,in the context of cancer therapy,a selective galectin-1 could be a viable approach as a monotherapy,or in combination with chemotherapeutic agents and/or checkpoint inhibitors,to enhance the numbers and activity of cytotoxic T cells in the tumour microenvironment of high galectin-1 expressing cancers.
View Publication
Feeder-independent culture systems for human pluripotent stem cells.
The continued success of pluripotent stem cell research is ultimately dependent on access to reliable and defined reagents for the consistent culture and cryopreservation of undifferentiated,pluripotent cells. The development of defined and feeder-independent culture media has provided a platform for greater reproducibility and standardization in this field. Here we provide detailed protocols for the use of mTeSR™1 and TeSR™2 with various cell culture matrices as well as defined cryopreservation protocols for human embryonic and human induced pluripotent stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chen C et al. (NOV 2016)
JCI insight 1 19 e88632
Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells.
The creation of a humanized chimeric mouse nervous system permits the study of human neural development and disease pathogenesis using human cells in vivo. Humanized glial chimeric mice with the brain and spinal cord being colonized by human glial cells have been successfully generated. However,generation of humanized chimeric mouse brains repopulated by human neurons to possess a high degree of chimerism have not been well studied. Here we created humanized neuronal chimeric mouse brains by neonatally engrafting the distinct and highly neurogenic human induced pluripotent stem cell (hiPSC)-derived rosette-type primitive neural progenitors. These neural progenitors predominantly differentiate to neurons,which disperse widely throughout the mouse brain with infiltration of the cerebral cortex and hippocampus at 6 and 13 months after transplantation. Building upon the hiPSC technology,we propose that this potentially unique humanized neuronal chimeric mouse model will provide profound opportunities to define the structure,function,and plasticity of neural networks containing human neurons derived from a broad variety of neurological disorders.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
W. Yang et al. (Aug 2025)
Cancers 17 17
A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers
Cancer research has long focused on mutations in normal body cells,but this approach has not produced major breakthroughs for most cancers. Our study explores a different concept that some aggressive cancers may actually arise from early reproductive cells called primordial germ cells,which normally develop into eggs and sperm. We created a new experimental model showing how a virus can transform human primordial germ cell-like cells into virus-positive Merkel cell carcinoma,a rare but deadly skin cancer. This model shows that cancers can emerge through changes in developmental states rather than relying solely on genetic mutations. By linking cancer development to early germ cells,our findings suggest a unifying explanation for both germ cell cancers and body cancers. This new perspective may guide more effective approaches to study,diagnose,and treat cancer by focusing on early human development rather than only DNA mutations and later developmental stages.
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
Lu M et al. (AUG 2009)
Experimental hematology 37 8 924--36
Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells
Objective: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) constitute unique sources of pluripotent cells,although the molecular mechanisms involved in their differentiation into specific lineages are just beginning to be defined. Here we evaluated the ability of MEDII (medium conditioned by HepG2 cells,a human hepatocarcinoma cell line) to selectively enhance generation of mesodermal derivatives,including hematopoietic cells,from hESCs and hiPSCs. Materials and Methods: Test cells were exposed to MEDII prior to being placed in conditions that promote embryoid body (EB) formation. Hematopoietic activity was measured by clonogenic assays,flow cytometry,quantitative real-time polymerase chain reaction of specific transcript complementary DNAs and the ability of cells to repopulate sublethally irradiated nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice for almost 1 year. Results: Exposure of both hESCs and hiPSCs to MEDII induced a rapid and preferential differentiation of hESCs into mesodermal elements. Subsequently produced EBs showed a further enhanced expression of transcripts characteristic of multiple mesodermal lineages,and a concurrent decrease in endodermal and ectodermal cell transcripts. Frequency of all types of clonogenic hematopoietic progenitors in subsequently derived EBs was also increased. In vivo assays of MEDII-treated hESC-derived EBs also showed they contained cells able to undertake low-level but longterm multilineage repopulation of primary and secondary nonobese diabetic/severe combined immunodeficient interleukin-2 receptor ??-chain-null mice. Conclusions: MEDII treatment of hESCs and hiPSCs alike selectively enhances their differentiation into mesodermal cells and allows subsequent generation of detectable levels of hematopoietic progenitors with in vitro and in vivo differentiating activity. ?? 2009 ISEH - Society for Hematology and Stem Cells.
View Publication
产品类型:
产品号#:
04230
05850
05857
05870
05875
36254
85850
85857
85870
85875
产品名:
MethoCult™H4230
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
Pardo-Saganta A et al. (JUL 2015)
Nature 523 7562 597--601
Parent stem cells can serve as niches for their daughter cells.
Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance,while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently,stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then,an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium,basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly,this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation,lineage tracing and signalling pathway modulation,we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals,the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus,a parent stem/progenitor cell can serve as a functional daughter cell niche.
View Publication
Trowbridge JJ et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 38 14134--9
Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration.
The signals that control the regenerative ability of hematopoietic stem cells (HSCs) in response to damage are unknown. Here,we demonstrate that downstream activation of the Hedgehog (Hh) signaling pathway induces cycling and expansion of primitive bone marrow hematopoietic cells under homeostatic conditions and during acute regeneration. However,this effect is at the expense of HSC function,because continued Hh activation during regeneration represses expression of specific cell cycle regulators,leading to HSC exhaustion. In vivo treatment with an inhibitor of the Hh pathway rescues these transcriptional and functional defects in HSCs. Our study establishes Hh signaling as a regulator of the HSC cell cycle machinery that balances hematopoietic homeostasis and regeneration in vivo.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Van Meter MEM et al. (MAY 2007)
Blood 109 9 3945--52
K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells.
Defining how cancer-associated mutations perturb signaling networks in stem/progenitor populations that are integral to tumor formation and maintenance is a fundamental problem with biologic and clinical implications. Point mutations in RAS genes contribute to many cancers,including myeloid malignancies. We investigated the effects of an oncogenic Kras(G12D) allele on phosphorylated signaling molecules in primary c-kit(+) lin(-/low) hematopoietic stem/progenitor cells. Comparison of wild-type and Kras(G12D) c-kit(+) lin(-/low) cells shows that K-Ras(G12D) expression causes hyperproliferation in vivo and results in abnormal levels of phosphorylated STAT5,ERK,and S6 under basal and stimulated conditions. Whereas Kras(G12D) cells demonstrate hyperactive signaling after exposure to granulocyte-macrophage colony-stimulating factor,we unexpectedly observe a paradoxical attenuation of ERK and S6 phosphorylation in response to stem cell factor. These studies provide direct biochemical evidence that cancer stem/progenitor cells remodel signaling networks in response to oncogenic stress and demonstrate that multi-parameter flow cytometry can be used to monitor the effects of targeted therapeutics in vivo. This strategy has broad implications for defining the architecture of signaling networks in primary cancer cells and for implementing stem cell-targeted interventions.
View Publication
产品类型:
产品号#:
03231
03434
03444
产品名:
MethoCult™M3231
MethoCult™GF M3434
MethoCult™GF M3434
Li Y et al. (MAR 2009)
Blood 113 10 2342--51
Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo.
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs),little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymal microenvironment,we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here,we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg(-/-) MSPCs into the tibiae of Fancg(-/-) recipient mice enhances the HSPC engraftment kinetics,the BM cellularity,and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg(-/-) recipients. Collectively,these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment.
View Publication
产品类型:
产品号#:
05501
05502
产品名:
Gottschling S et al. (MAR 2007)
Stem cells (Dayton,Ohio) 25 3 798--806
Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism.
In previous reports,we have demonstrated that only direct cell-cell contact with stromal cells,such as the murine stromal cell line AFT024,was able to alter the cell division kinetics and self-renewing capacity of hematopoietic progenitor cells (HPC). Because beta(1)-integrins were shown to be crucial for the interaction of HPC with the bone marrow microenvironment,we have studied the role of beta(1)-integrins in the regulation of self-renewing cell divisions. For this purpose,we used primary human mesenchymal stromal (MS) cells as in vitro surrogate niche and monitored the division history and subsequent functional fate of individually plated CD34(+)133(+) cells in the absence or presence of an anti-beta(1)-integrin blocking antibody by time-lapse microscopy and subsequent long-term culture-initiating cell (LTC-IC) assays. beta(1)-Integrin-mediated contact with MS cells significantly increased the proportion of asymmetrically dividing cells and led to a substantial increase of LTC-IC. Provided that beta(1)-integrin-mediated contact was available within the first 72 hours,human MS cells were able to recruit HPC into cell cycle and accelerate their division kinetics without loss of stem cell function. Activation of beta(1)-integrins by ligands alone (e.g.,fibronectin and vascular cell adhesion molecule-1) was not sufficient to alter the cell division symmetry and promote self-renewal of HPC,thus indicating an indirect effect. These results have provided evidence that primary human MS cells are able to induce self-renewing divisions of HPC by a beta(1)-integrin-dependent mechanism.
View Publication