Schmidt K et al. (MAR 2009)
Journal of leukocyte biology 85 3 563--73
Histone deacetylase inhibition improves differentiation of dendritic cells from leukemic blasts of patients with TEL/AML1-positive acute lymphoblastic leukemia.
Histone deacetylase inhibitors (HdI) could potentially improve the differentiation of leukemic dendritic cells (DC). Therefore,bone marrow samples from 100 children with acute lymphoblastic leukemia (ALL) were cultured in the cytokines TNF-alpha,GM-CSF,c-kit ligand,and fetal liver tyrosine kinase 3 ligand,with or without IL-3 and -4 and after administration of HdI valproic acid (VAL),suberoylanilide hydroxamic acid (SAHA),isobutyramid,or trichostatin A. Among the tested samples,25 were positive for the chromosomal translocation t(12;21),encoding the fusion gene translocation ETS-like leukemia/acute myeloid leukemia 1 (TEL/AML1). SAHA increased CD83 expression of TEL/AML1-positive blasts in conditions without ILs,and SAHA and VAL increased the number of CD86(+)80(-) cells in the presence of ILs. VAL and isobutyramid supported the allostimulatory capacities of TEL/AML1-positive,leukemic DC; VAL and SAHA reduced those of TEL/AML1-negative DC. Cytotoxic T cells sensitized with leukemic DC produced more IFN-gamma and TNF-alpha upon presentation of the TEL/AML1 peptide. They also induced the cytotoxic lysis of nondifferentiated blasts,which was enhanced when TEL/AML1-positive DC had developed after addition of VAL or SAHA. Therefore,the use of HdI in the differentiation of leukemic DC from patients with TEL/AML1-positive ALL is recommended.
View Publication
产品类型:
产品号#:
09850
产品名:
Eberhard Y et al. (OCT 2009)
Blood 114 14 3064--73
Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells.
Off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication. To identify such compounds,we conducted 2 independent cell-based chemical screens and identified the antimicrobial ciclopirox olamine (CPX) in both screens. CPX decreased cell growth and viability of malignant leukemia,myeloma,and solid tumor cell lines as well as primary AML patient samples at low-micromolar concentrations that appear pharmacologically achievable. Furthermore,oral CPX decreased tumor weight and volume in 3 mouse models of leukemia by up to 65% compared with control without evidence of weight loss or gross organ toxicity. In addition,oral CPX prevented the engraftment of primary AML cells in nonobese diabetic/severe combined immunodeficiency mouse models,thereby establishing its ability to target leukemia stem cells. Mechanistically,CPX bound intracellular iron,and this intracellular iron chelation was functionally important for its cytotoxicity. By electron paramagnetic resonance,CPX inhibited the iron-dependent enzyme ribonucleotide reductase at concentrations associated with cell death. Thus,in summary,CPX has previously unrecognized anticancer activity at concentrations that are pharmacologically achievable. Therefore,CPX could be rapidly repurposed for the treatment of malignancies,including leukemia and myeloma.
View Publication
产品类型:
产品号#:
14056
14066
产品名:
Su Y et al. (FEB 2010)
Cancer epidemiology,biomarkers & prevention : a publication of the American Association for Cancer Research,cosponsored by the American Society of Preventive Oncology 19 2 327--37
Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer.
Aldehyde dehydrogenase 1 A1 (ALDH1A1) has recently been suggested as a marker for cancer stem or stem-like cancer cells of some human malignancies. The purpose of this study was to investigate the stem cell-related function and clinical significance of the ALDH1A1 in bladder urothelial cell carcinoma. Aldefluor assay was used to isolate ALDH1A1+ cells from bladder cancer cells. Stem cell characteristics of the ALDH1A1+ cells were then investigated by in vitro and in vivo approaches. Immunohistochemistry was done for evaluating ALDH1A1 expression on 22 normal bladder tissues and 216 bladder tumor specimens of different stage and grade. The ALDH1A1+ cancer cells displayed higher in vitro tumorigenicity compared with isogenic ALDH1A1- cells. The ALDH1A1+ cancer cells could generate xenograft tumors that resembled the histopathologic characteristics and heterogeneity of the parental cells. High ALDH1A1 expression was found in 26% (56 of 216) of human bladder tumor specimens and significantly related to advanced pathologic stage,high histologic grade,recurrence and progression,and metastasis of bladder urothelial cell carcinomas (all P textless 0.05). Furthermore,ALDH1A1 expression was inversely associated with cancer-specific and overall survivals of the patients (P = 0.027 and 0.030,respectively). Therefore,ALDH1A1+ cell population could be enriched in tumor-initiating cells. ALDH1A1 may serve as a useful marker for monitoring the progression of bladder tumor and identifying bladder cancer patients with poor prognosis who might benefit from adjuvant and effective treatments.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Gupta SC et al. (SEP 2010)
Cancer metastasis reviews 29 3 405--34
Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals.
Almost 25 centuries ago,Hippocrates,the father of medicine,proclaimed Let food be thy medicine and medicine be thy food." Exploring the association between diet and health continues today. For example
View Publication
产品类型:
产品号#:
73462
73464
产品名:
Butein
Risueñ et al. (JUN 2011)
Blood 117 26 7112--20
Identification of T-lymphocytic leukemia-initiating stem cells residing in a small subset of patients with acute myeloid leukemic disease.
Xenotransplantation of acute myeloid leukemia (AML) into immunodeficient mice has been critical for understanding leukemogenesis in vivo and defining self-renewing leukemia-initiating cell subfractions (LICs). Although AML-engraftment capacity is considered an inherent property of LICs,substrains of NOD/SCID mice that possess additional deletions such as the IL2Rγc(null) (NSG) have been described as a more sensitive recipient to assay human LIC function. Using 23 AML-patient samples,39% demonstrated no detectable engraftment in NOD/SCID and were categorized as AMLs devoid of LICs. However,33% of AML patients lacking AML-LICs were capable of engrafting NSG recipients,but produced a monoclonal T-cell proliferative disorder similar to T-ALL. These grafts demonstrated self-renewal capacity as measured by in vivo serial passage and were restricted to CD34-positive fraction,and were defined as LICs. Molecular analysis for translocations in MLL genes indicated that these AML patient-derived LICs all expressed the MLL-AFX1 fusion product. Our results reveal that the in vivo human versus xenograft host microenvironment dictates the developmental capacity of human LICs residing in a small subset of patients diagnosed with AML harboring MLL mutations. These findings have implications both for the basic biology of CSC function,and for the use of in vivo models of the leukemogenic process in preclinical or diagnostic studies.
View Publication
产品类型:
产品号#:
84434
84444
产品名:
Iacovino M et al. (OCT 2011)
Stem Cells 29 10 1580--1587
Inducible cassette exchange: A rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells
Genetic modification is critically enabling for studies addressing specification and maintenance of cell fate; however,methods for engineering modifications are inefficient. We demonstrate a rapid and efficient recombination system in which an inducible,floxed cre allele replaces itself with an incoming transgene. We target this inducible cassette exchange (ICE) allele to the (HPRT) locus and demonstrate recombination in murine embryonic stem cells (ESCs) and primary cells from derivative ICE mice. Using lentivectors,we demonstrate recombination at a randomly integrated ICE locus in human ESCs. To illustrate the utility of this system,we insert the myogenic regulator,Myf5,into the ICE locus in each platform. This enables efficient directed differentiation of mouse and human ESCs into skeletal muscle and conditional myogenic transdetermination of primary cells cultured in vitro. This versatile tool is thus well suited to gain-of-function studies probing gene function in the specification and reprogramming of cell fate.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Louis SA et al. (JAN 2013)
Methods in molecular biology (Clifton,N.J.) 946 479--506
Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system.
Since the discovery of neural stem cells (NSC) in the embryonic and adult mammalian central nervous system (CNS),there have been a growing numbers of tissue culture media and protocols to study and functionally characterize NSCs and its progeny in vitro. One of these culture systems introduced in 1992 is referred to as the Neurosphere Assay,and it has been widely used to isolate,expand,differentiate and even quantify NSC populations. Several years later because its application as a quantitative in vitro assay for measuring NSC frequency was limited,a new single-step semisolid based assay,the Neural Colony Forming Cell (NCFC) assay was developed to accurately measure NSC numbers. The NCFC assay allows the discrimination between NSCs and progenitors by the size of colonies they produce (i.e.,their proliferative potential). The evolution and continued improvements made to these tissue culture tools will facilitate further advances in the promising application of NSCs for therapeutic use.
View Publication
产品类型:
产品号#:
05700
05701
05715
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
Saitta B et al. (JUL 2014)
Stem cells and development 23 13 1464--1478
Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFβ1.
Skeletal dysplasias (SDs) are caused by abnormal chondrogenesis during cartilage growth plate differentiation. To study early stages of aberrant cartilage formation in vitro,we generated the first induced pluripotent stem cells (iPSCs) from fibroblasts of an SD patient with a lethal form of metatropic dysplasia,caused by a dominant mutation (I604M) in the calcium channel gene TRPV4. When micromasses were grown in chondrogenic differentiation conditions and compared with control iPSCs,mutant TRPV4-iPSCs showed significantly (Ptextless0.05) decreased expression by quantitative real-time polymerase chain reaction of COL2A1 (IIA and IIB forms),SOX9,Aggrecan,COL10A1,and RUNX2,all of which are cartilage growth plate markers. We found that stimulation with BMP2,but not TGF$\$1,up-regulated COL2A1 (IIA and IIB) and SOX9 gene expression,only in control iPSCs. COL2A1 (Collagen II) expression data were confirmed at the protein level by western blot and immunofluorescence microscopy. TRPV4-iPSCs showed only focal areas of Alcian blue stain for proteoglycans,while in control iPSCs the stain was seen throughout the micromass sample. Similar staining patterns were found in neonatal cartilage from control and patient samples. We also found that COL1A1 (Collagen I),a marker of osteogenic differentiation,was significantly (Ptextless0.05) up-regulated at the mRNA level in TRPV4-iPSCs when compared with the control,and confirmed at the protein level. Collagen I expression in the TRPV4 model also may correlate with abnormal staining patterns seen in patient tissues. This study demonstrates that an iPSC model can recapitulate normal chondrogenesis and that mutant TRPV4-iPSCs reflect molecular evidence of aberrant chondrogenic developmental processes,which could be used to design therapeutic approaches for disorders of cartilage.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Madison JM et al. (JUN 2015)
Molecular Psychiatry 20 November 2013 703--17
Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities.
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD,little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD,we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially,no significant phenotypic differences were observed between iPSCs derived from the different family members. However,upon directed neural differentiation,we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity,including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3,a known regulator of WNT signaling,was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together,these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
27845
27945
27840
27865
27940
27965
产品名:
mTeSR™1
mTeSR™1
Thoma EC et al. (OCT 2016)
Scientific reports 6 35830
Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey.
Due to their broad differentiation potential,pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced,similar systems for non-human primates (NHPs) are still lacking. However,as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals,the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here,we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs,we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover,we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions,such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Guo D et al. (JAN 2017)
Stem cell research 18 64--66
Generation of non-integrated induced pluripotent stem cells from a 59-year-old female with multiple endocrine neoplasia type 1 syndrome.
Urine resource cells were collected from a 59-year-old female patient with multiple endocrine neoplasia type 1 syndrome (MEN1) for generating iPS cells with episomal plasmids carrying Oct4,Sox2,Klf4 and miR-302-367. The patient sustained a heterozygous GtextgreaterT transition mutation on the exon 9 of Men1 gene that was confirmed by sequencing analysis on the obtained iPSC lines. Karyotyping indicated the chromosomes with normal appearances and numbers. Their pluripotency was demonstrated by gene expression,as well as their abilities for differentiating into three germ layers. This cell line provides an ideal model for studying MEN1.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Carroll M et al. (DEC 1997)
Blood 90 12 4947--52
CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins.
CGP 57148 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the ABL and the platelet-derived growth factor receptor (PDGFR) protein tyrosine kinases. We previously showed that CGP 57148 selectively kills p210BCR-ABL-expressing cells. To extend these observations,we evaluated the ability of CGP 57148 to inhibit other activated ABL tyrosine kinases,including p185BCR-ABL and TEL-ABL. In cell-based assays of ABL tyrosine phosphorylation,inhibition of ABL kinase activity was observed at concentrations similar to that reported for p210BCR-ABL. Consistent with the in vitro profile of this compound,the growth of cells expressing activated ABL protein tyrosine kinases was inhibited in the absence of exogenous growth factor. Growth inhibition was also observed with a p185BCR-ABL-positive acute lymphocytic leukemia (ALL) cell line generated from a Philadelphia chromosome-positive ALL patient. As CGP 57148 inhibits the PDGFR kinase,we also showed that cells expressing an activated PDGFR tyrosine kinase,TEL-PDGFR,are sensitive to this compound. Thus,this compound may be useful for the treatment of a variety of BCR-ABL-positive leukemias and for treatment of the subset of chronic myelomonocytic leukemia patients with a TEL-PDGFR fusion protein.
View Publication