Axillary adipose tissue–derived lymphatic endothelial cells exhibit distinct transcriptomic signatures reflecting lymphatic invasion status in breast cancer
BackgroundLymphatics provide a route for breast cancer cells to metastasize. Lymphatic endothelial cells (LECs),which form the structure of lymphatic vessels,play a key role in this process. Although LECs are pivotal in cancer progression,studies often rely on commercially available cell lines that may not accurately reflect the tumor microenvironment. Therefore,there is a pressing need to directly study patient-derived LECs to better understand their role in breast cancer.MethodsThis study developed a method to isolate and characterize LECs directly from human breast-to-axilla adipose tissue. We used magnetic cell separation to remove CD45 + leukocytes and fluorescence-activated cell sorting to isolate cells expressing CD31 and podoplanin. Isolated cells were cultured under conditions promoting endothelial cell growth and were characterized through various assays assessing proliferation,tube formation,and gene expression patterns.ResultsThe sorted CD31 + /PDPN + /CD45 − cell populations exhibited marked increases in proliferation upon VEGF-C stimulation and formed tubule structures on BME-coated dishes,confirming their LEC properties. Notably,isolated LECs showed distinct gene expression patterns depending on the presence of lymph node metastasis and lymphatic invasion.ConclusionsThe ability to isolate and characterize patient-derived LECs from mammary adipose tissue offers new insights into the cellular mechanisms underlying breast cancer metastasis. Significant gene expression variability related to disease state highlights the potential of these cells as biomarkers and therapeutic targets. This study emphasizes the importance of using patient-derived cells to accurately assess the tumor microenvironment,potentially leading to more personalized therapeutic approaches.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13058-025-02067-w.
View Publication
产品类型:
产品号#:
17898
17898RF
产品名:
EasySep™人CD45去除试剂盒II
RoboSep™ 人CD45去除试剂盒II
R. Guerrero-López et al. (Feb 2025)
Scientific Reports 15 1
Premature ageing of lung alveoli and bone marrow cells from Terc deficient mice with different telomere lengths
Telomeres are terminal protective chromosome structures. Genetic variants in genes coding for proteins required for telomere maintenance cause rare,life-threatening Telomere Biology Disorders (TBDs) such as dyskeratosis congenita,aplastic anemia or pulmonary fibrosis. The more frequently used mice strains have telomeres much longer than the human ones which question their use as in vivo models for TBDs. One mice model with shorter telomeres based on the CAST/EiJ mouse strain carrying a mutation in the Terc gene,coding for the telomerase RNA component,has been studied in comparison with C57BL/6J mice,carrying the same mutation and long telomeres. The possible alterations produced in lungs and the haematopoietic system,frequently affected in TBD patients,were determined at different ages of the mice. Homozygous mutant mice presented a very shortened life span,more notorious in the short-telomeres CAST/EiJ strain. The lungs of mutant mice presented a transitory increase in fibrosis and a significant decrease in the relative amount of the alveolar epithelial type 2 cells from six months of age. This decrease was larger in mutant homozygous animals but was also observed in heterozygous animals. On the contrary the expression of the senescence-related protein P21 increased from six months of age in mutant mice of both strains. The analysis of the haematopoietic system indicated a decrease in the number of megakaryocyte-erythroid progenitors in homozygous mutants and an increase in the clonogenic potential of bone marrow and LSK cells. Bone marrow cells from homozygous mutant animals presented decreasing in vitro expansion capacity. The alterations observed are compatible with precocious ageing of lung alveolar cells and the bone marrow cells that correlate with the alterations observed in TBD patients. The alterations seem to be more related to the genotype of the animals that to the basal telomere length of the strains although they are more pronounced in the short-telomere CAST/EiJ-derived strain than in C57BL/6J animals. Therefore,both animal models,at ages over 6–8 months,could represent valuable and convenient models for the study of TBDs and for the assay of new therapeutic products.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Chen Y et al. ( 2015)
Journal of diabetes research 2015 796912
A Combination of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Transplant with LDHA-Repressing miRNA Can Attenuate High-Fat Diet Induced Type II Diabetes in Mice.
Type II diabetes mellitus (T2D) is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. The deficit and dysfunction of insulin secreting $\$-cell are signature symptom for T2D. Additionally,in pancreatic $\$-cell,a small group of genes which are abundantly expressed in most other tissues are highly selectively repressed. Lactate dehydrogenase A (LDHA) is one of such genes. Upregulation of LDHA is found in both human T2D and rodent T2D models. In this study,we identified a LDHA-suppressing microRNA (hsa-miR-590-3p) and used it together with human embryonic stem cell (hESC) derived pancreatic endoderm (PE) transplantation into a high-fat diet induced T2D mouse model. The procedure significantly improved glucose metabolism and other symptoms of T2D. Our findings support the potential T2D treatment using the combination of microRNA and hESC-differentiated PE cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ma D et al. (JAN 2017)
Stem cell research 18 45--47
Reprogramming of a human induced pluripotent stem cell (iPSC) line from a Parkinson's disease patient with a R1628P variant in the LRRK2 gene.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 59-year old male Parkinson's disease (PD) patient with R1628P variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will provide a good resource for further pathophysiological studies of PD.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Heynekamp JJ et al. ( 2006)
Journal of medicinal chemistry 49 24 7182--7189
Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB.
The transcription factor nuclear factor kappaB (NF-kappaB),which regulates expression of numerous antiinflammatory genes as well as genes that promote development of the prosurvival,antiapoptotic state is up-regulated in many cancer cells. The natural product resveratrol,a polyphenolic trans-stilbene,has numerous biological activities and is a known inhibitor of activation of NF-kappaB,which may account for some of its biological activities. Resveratrol exhibits activity against a wide variety of cancer cells and has demonstrated activity as a cancer chemopreventive against all stages,i.e.,initiation,promotion,and progression. The biological activities of resveratrol are often ascribed to its antioxidant activity. Both antioxidant activity and biological activities of analogues of resveratrol depend upon the number and location of the hydroxy groups. In the present study,phenolic analogues of resveratrol and a series of substituted trans-stilbenes without hydroxy groups were compared with resveratrol for their abilities to inhibit the human tumor necrosis factor alpha-induced (TNF-alpha) activation of NF-kappaB,using the Panomics NF-kappaB stable reporter cell line 293/NF-kappaB-luc. A series of 75 compounds was screened to identify substituted trans-stilbenes that were more active than resveratrol. Dose-response studies of the most active compounds were carried out to obtain IC50 values. Numerous compounds were identified that were more active than resveratrol,including compounds that were devoid of hydroxy groups and were 100-fold more potent than resveratrol. The substituted trans-stilbenes that were potent inhibitors of the activation of NFkappaB generally did not exhibit antioxidant activity. The results from screening were confirmed using BV-2 microglial cells where resveratrol and analogues were shown to inhibit LPS-induced COX-2 expression.
View Publication
产品类型:
产品号#:
73022
产品名:
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 673--676
Generation of a human iPSC line from a patient with an optic atrophy ‘plus' phenotype due to a mutation in the OPA1 gene
Human iPSC line Oex2054SV.4 was generated from fibroblasts of a patient with an optic atrophy 'plus' phenotype associated with a heterozygous mutation in the OPA1 gene. Reprogramming factors OCT3/4,SOX2,CMYC and KLF4 were delivered using a non-integrative methodology that involves the use of Sendai virus.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Menendez P et al. (DEC 2009)
The Journal of experimental medicine 206 13 3131--41
Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene.
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1,BCR-ABL,AML1-ETO,MLL-AF9,MLL-AF10,MLL-ENL or hyperdiploidy. However,MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4(+) B-ALL. Unlike leukemic blasts,MLL-AF4(+) BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related,highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4(+) B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype,suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4(+) BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Tio M et al. (JAN 2010)
PloS one 5 2 e9398
Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.
Mesenchymal stem cells (MSCs) have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage,there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here,we show that MSCs derived from human umbilical cord blood (MSC(hUCBs)) are capable of expressing tyrosine hydroxylase (TH) and Nurr1,markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB). Furthermore,functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP),3-isobutyl-1-methylxanthine (IBMX) and retinoic acid (RA) are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.
View Publication
产品类型:
产品号#:
72762
72764
产品名:
IBMX
IBMX
Maurer MH et al. (MAR 2007)
Journal of proteome research 6 3 1198--208
Glycogen synthase kinase 3beta (GSK3beta) regulates differentiation and proliferation in neural stem cells from the rat subventricular zone.
On the basis of its inhibition by SB216763,we identified the multifunctional enzyme Glycogen Synthase Kinase 3beta (GSK3beta) as a central regulator for differentiation and cell survival of adult neural stem cells. Detected by proteomic approaches,members of the Wnt/beta-catenin signaling pathway appear to participate in enhanced neuronal differentiation and activated transcription of beta-catenin target genes during GSK3beta inhibition,associated with decreased apoptosis.
View Publication
产品类型:
产品号#:
72872
72874
产品名:
SB216763
de Valle E et al. (APR 2016)
The Journal of Experimental Medicine 213 4 621--41
NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells.
We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1(-/-)) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity ofNfκb1(-/-)Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation,the formation of GC structures was severely disrupted in theNfκb1(-/-)mice. Bone marrow chimeric mice revealed that the Fo B cell-intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels,which promotes the differentiation of Fo helper CD4(+)T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM(+)Nfκb1(-/-)Fo B cells. We demonstrate that p50-NFκB1 repressesIl-6transcription in Fo B cells,with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription ofIl-6.Collectively,our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation ofIl-6gene expression in Fo B cells.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Bahl V et al. (JUN 2016)
Toxicological sciences : an official journal of the Society of Toxicology 153 1 kfw102
From the Cover: Thirdhand Cigarette Smoke Causes Stress-Induced Mitochondrial Hyperfusion and Alters the Transcriptional Profile of Stem Cells.
Thirdhand cigarette smoke (THS) was recently recognized as an environmental health hazard; however,little is known about it effects on cells. Mitochondria are sensitive monitors of cell health and report on environmentally-induced stress. We tested the effects of low levels of THS extracted from terry cloth on mitochondrial morphology and function using stem cells with well-defined mitochondria. Concentrations of THS that did not kill cells caused stress-induced mitochondrial hyperfusion (SIMH),which was characterized by changes in mitochondrial morphology indicative of fusion,increased mitochondrial membrane potential (MMP),increased ATP levels,increased superoxide production,and increased oxidation of mitochondrial proteins. SIMH was accompanied by a decrease in Fis1 expression,a gene responsible for mitochondrial fission,and a decrease in apoptosis-related genes,including Aifm2,Bbc3 and Bid There was also down regulation of Ucp2,Ucp4 and Ucp5,genes that decrease MMP thereby reducing oxidative phosphorylation,while promoting glycolysis. These effects,which collectively accompany SIMH,are a pro-survival mechanism to rescue damaged mitochondria and protect cells from apoptosis. Prolonged exposure to THS caused a reduction in MMP and decreased cell proliferation,which likely leads to apoptosis.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Kansy BA et al. (NOV 2017)
Cancer research 77 22 6353--6364
PD-1 Status in CD8+ T Cells Associates with Survival and Anti-PD-1 Therapeutic Outcomes in Head and Neck Cancer.
Improved understanding of expression of immune checkpoint receptors (ICR) on tumor-infiltrating lymphocytes (TIL) may facilitate more effective immunotherapy in head and neck cancer (HNC) patients. A higher frequency of PD-1+ TIL has been reported in human papillomavirus (HPV)+ HNC patients,despite the role of PD-1 in T-cell exhaustion. This discordance led us to hypothesize that the extent of PD-1 expression more accurately defines T-cell function and prognostic impact,because PD-1high T cells may be more exhausted than PD-1low T cells and may influence clinical outcome and response to anti-PD-1 immunotherapy. In this study,PD-1 expression was indeed upregulated on HNC patient TIL,and the frequency of these PD-1+ TIL was higher in HPV+ patients (P = 0.006),who nonetheless experienced significantly better clinical outcome. However,PD-1high CD8+ TILs were more frequent in HPV- patients and represented a more dysfunctional subset with compromised IFN-γ secretion. Moreover,HNC patients with higher frequencies of PD-1high CD8+ TIL showed significantly worse disease-free survival and higher hazard ratio for recurrence (P < 0.001),while higher fractions of PD-1low T cells associated with HPV positivity and better outcome. In a murine HPV+ HNC model,anti-PD-1 mAb therapy differentially modulated PD-1high/low populations,and tumor rejection associated with loss of dysfunctional PD-1high CD8+ T cells and a significant increase in PD-1low TIL. Thus,the extent of PD-1 expression on CD8+ TIL provides a potential biomarker for anti-PD-1-based immunotherapy. Cancer Res; 77(22); 6353-64. textcopyright2017 AACR.
View Publication