Freeman SA et al. (JAN 2018)
Cell 172 2-Jan 305--317.e10
Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement.
Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion,however,can be obstructed by transmembrane proteins (pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44 an abundant transmembrane protein capable of indirect association with F-actin hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages where receptor mobility was minimal. Conversely receptors were most mobile at the leading edge where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier enabling receptors to engage their targets.
View Publication
产品类型:
产品号#:
19359
19359RF
60068
60068.1
60068AD
60068AD.1
60068AZ
60068AZ.1
60068BT
60068BT.1
60068FI
60068FI.1
60068PE
60068PE.1
60068PS
60068PS.1
60012
60012FI
60012FI.1
100-0697
100-1574
产品名:
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
抗小鼠CD44抗体,克隆IM7
抗小鼠CD44抗体,克隆IM7
抗小鼠CD44抗体,clone IM7,Alexa Fluor® 488
抗小鼠CD44抗体,克隆IM7,Alexa Fluor® 488
抗小鼠CD44抗体,克隆IM7,APC
抗小鼠CD44抗体,克隆IM7,APC
抗小鼠CD44抗体,克隆IM7,Biotin
抗小鼠CD44抗体,克隆IM7,Biotin
抗小鼠CD44抗体,克隆IM7,FITC
抗小鼠CD44抗体,克隆IM7,PE
抗小鼠CD44抗体,克隆IM7,PE
抗小鼠CD44抗体,克隆IM7,PerCP-Cy5.5
抗人CD32抗体, 克隆号IV.3
抗人CD32抗体,clone IV.3,FITC
EasySep™人单核细胞分选试剂盒
抗人CD32抗体,克隆IV.3,FITC
Ghosh D et al. ( 2016)
Stem cells (Dayton,Ohio) 34 9 2276--89
TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme.
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date,no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations,justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry,here we present five cell-surface markers HMOX1,SLC16A1,CADM1,SCAMP3,and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM,substantiating the histopathological hallmarks of GBM. In a prospective study (N%=%8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness,we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition,surgical resection of GBM tumors caused declines (18%%±%5.1SEM) in the level of plasma HMOX1 as measured by ELISA,in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Heberden C et al. (NOV 2013)
The Journal of Steroid Biochemistry and Molecular Biology 138 395--402
Dexamethasone inhibits the maturation of newly formed neurons and glia supplemented with polyunsaturated fatty acids
Stress bears a negative impact on adult neurogenesis. High levels of corticoids have been shown to inhibit neural stem cell proliferation,and are considered responsible for the loss of neural precursors. Their effects on the differentiation of the glial and neuronal lineages have been less studied. We examined the effect of dexamethasone (Dex),a synthetic glucocorticoid,on the differentiation of rat neural stem cells in vitro. Dex had no effect on the differentiation of cells cultured under standard conditions. Since we previously determined that NSC,when cultured under classical conditions,were deprived of polyunsaturated fatty acids (PUFA),and displayed phospholipid compositions very different from the in vivo figures [1],we examined the effect of Dex under PUFA supplementation. Dex impaired neuron and oligodendrocyte maturation in PUFA-supplemented cells,demonstrated by the reduction of neurite lengths and oligodendrocyte sizes. This effect was mediated by the glucocorticoid receptor (GR),since it was eliminated by mifepristone,a GR antagonist,and could be relayed by a reduction of ERK phosphorylation. We determined that GR was associated with PPAR β and α under basal conditions,and that this association was disrupted when PUFA were added in combination with Dex. We assumed that this effect on the receptor status enabled the effect of Dex on PUFA supplemented cells,since we determined that the binding to the glucocorticoid response element was higher in cells incubated with PUFA and Dex. In conclusion,corticoids can impair NSC differentiation,and consequently impact the entire process of neurogenesis.
View Publication
产品类型:
产品号#:
05771
产品名:
D. Kim et al. ( 2017)
Journal of immunology (Baltimore,Md. : 1950) 199 4 1362--1371
Mesenchymal Cell-Specific MyD88 Signaling Promotes Systemic Dissemination of Salmonella Typhimurium via Inflammatory Monocytes.
Enteric pathogens including Salmonella enteric serovar Typhimurium can breach the epithelial barrier of the host and spread to systemic tissues. In response to infection,the host activates innate immune receptors via the signaling molecule MyD88,which induces protective inflammatory and antimicrobial responses. Most of these innate immune responses have been studied in hematopoietic cells,but the role of MyD88 signaling in other cell types remains poorly understood. Surprisingly,we found that Dermo1-Cre;Myd88fl/fl mice with mesenchymal cell-specific deficiency of MyD88 were less susceptible to orogastric and i.p. STyphimurium infection than their Myd88fl/fl littermates. The reduced susceptibility of Dermo1-Cre;Myd88fl/fl mice to infection was associated with lower loads of S. Typhimurium in the liver and spleen. Mutant analyses revealed that S. Typhimurium employs its virulence type III secretion system 2 to promote its growth through MyD88 signaling pathways in mesenchymal cells. Inflammatory monocytes function as a major cell population for systemic dissemination of S. Typhimurium Mechanistically,mesenchymal cell-specific MyD88 signaling promoted CCL2 production in the liver and spleen and recruitment of inflammatory monocytes to systemic organs in response to STyphimurium infection. Consistently,MyD88 signaling in mesenchymal cells enhanced the number of phagocytes including Ly6ChiLy6G- inflammatory monocytes harboring STyphimurium in the liver. These results suggest that S. Typhimurium promotes its systemic growth and dissemination through MyD88 signaling pathways in mesenchymal cells.
View Publication
产品类型:
产品号#:
18557
18557RF
18559
18559RF
产品名:
Ghosh M et al. (SEP 2011)
American journal of respiratory cell and molecular biology 45 3 459--69
A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell.
Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However,delineation of the TSC-niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49f(bright)/Sca1(+)/ALDH(+) basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type,the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus,rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air-liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However,rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus,the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury,the behavior of CD49f(bright)/Sca1(+)/ALDH(+) cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium,their proliferation rate increased in response to injury,and they retained label for 34 days. We conclude that the CD49f(bright)/Sca1(+)/ALDH(+) tracheal basal cell is a TSC,that it generates its own niche in vitro,and that it participates in tracheal epithelial homeostasis and repair.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Marcato P et al. (MAY 2011)
Cell cycle (Georgetown,Tex.) 10 9 1378--84
Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform.
Recent evidence suggests that enhanced aldehyde dehydrogenase (ALDH) activity is a hallmark of cancer stem cells (CSC) measurable by the aldefluor assay. ALDH1A1,one of 19 ALDH isoforms expressed in humans,was generally believed to be responsible for the ALDH activity of CSCs. More recently,experiments with murine hematopoietic stem cells,murine progenitor pancreatic cells,and human breast CSCs indicate that other ALDH isoforms,particularly ALDH1A3,significantly contribute to aldefluor positivity,which may be tissue and cancer specific. Therefore,potential prognostic application involving the use of CSC prevalence in tumor tissue to predict patient outcome requires the identification and quantification of specific ALDH isoforms. Herein we review the suggested roles of ALDH in CSC biology and the immunohistological studies testing the potential application of ALDH isoforms as novel cancer prognostic indicators.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Dobie FA and Craig AM (JUL 2011)
The Journal of neuroscience : the official journal of the Society for Neuroscience 31 29 10481--93
Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.
Dynamics of GABAergic synaptic components have been studied previously over milliseconds to minutes,revealing mobility of postsynaptic scaffolds and receptors. Here we image inhibitory synapses containing fluorescently tagged postsynaptic scaffold Gephyrin,together with presynaptic vesicular GABA transporter (VGAT) or postsynaptic GABA(A) receptor γ2 subunit (GABA(A)Rγ2),over seconds to days in cultured rat hippocampal neurons,revealing modes of inhibitory synapse formation and remodeling. Entire synapses were mobile,translocating rapidly within a confined region and exhibiting greater nonstochastic motion over multihour periods. Presynaptic and postsynaptic components moved in unison,maintaining close apposition while translocating distances of several micrometers. An observed flux in the density of synaptic puncta partially resulted from the apparent merging and splitting of preexisting clusters. De novo formation of inhibitory synapses was observed,marked by the appearance of stably apposed Gephyrin and VGAT clusters at sites previously lacking either component. Coclustering of GABA(A)Rγ2 supports the identification of such new clusters as synapses. Nascent synapse formation occurred by gradual accumulation of components over several hours,with VGAT clustering preceding that of Gephyrin and GABA(A)Rγ2. Comparing VGAT labeling by active uptake of a luminal domain antibody with post hoc immunocytochemistry indicated that recycling vesicles from preexisting boutons significantly contribute to vesicle pools at the majority of new inhibitory synapses. Although new synapses formed primarily on dendrite shafts,some also formed on dendritic protrusions,without apparent interconversion. Altogether,the long-term imaging of GABAergic presynaptic and postsynaptic components reveals complex dynamics and perpetual remodeling with implications for mechanisms of assembly and synaptic integration.
View Publication
产品类型:
产品号#:
05711
100-1281
产品名:
NeuroCult™ SM1 神经添加物
NeuroCult™ SM1 神经添加物
Chang W-W et al. (MAR 2013)
Head & neck 35 3 413--9
Quercetin in elimination of tumor initiating stem-like and mesenchymal transformation property in head and neck cancer.
BACKGROUND: Previously,we enriched a subpopulation of head and neck cancer-derived tumor initiating cells (HNC-TICs) presented high tumorigenic,chemo-radioresistant,and coupled with epithelial-mesenchymal transition (EMT) properties. The purpose of this study was to investigate the therapeutic effect and molecular mechanisms of quercetin on HNC-TICs. METHOD: ALDH1 activity of head and neck cancer cells with quercetin treatment was assessed by the Aldefluor assay flow cytometry analysis. Self-renewal,invasiveness,and EMT capability of HNC-TICs with different doses of quercetin was presented. RESULTS: We first observed that the treatment of quercetin significantly downregulated the ALDH1 activity of head and neck cancer cells in a dose-dependent manner (p textless .05). Moreover,quercetin reduced self-renewal property and stemness signatures expression in head and neck cancer-derived sphere cells. The migration ability of head and neck cancer-derived sphere cells was lessened under quercetin treatment partially due to the decreased productions of Twist,N-cadherin,and vimentin. CONCLUSION: Quercetin suppressing HNC-TICs characteristics may therefore be valuable therapeutics clinically in combination with standard treatment modalities.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Wang J et al. ( 2012)
Cell stem cell 11 1 23--35
Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation.
VIDEO ABSTRACT: Although endogenous recruitment of adult neural stem cells has been proposed as a therapeutic strategy,clinical approaches for achieving this are lacking. Here,we show that metformin,a widely used drug,promotes neurogenesis and enhances spatial memory formation. Specifically,we show that an atypical PKC-CBP pathway is essential for the normal genesis of neurons from neural precursors and that metformin activates this pathway to promote rodent and human neurogenesis in culture. Metformin also enhances neurogenesis in the adult mouse brain in a CBP-dependent fashion,and in so doing enhances spatial reversal learning in the water maze. Thus,metformin,by activating an aPKC-CBP pathway,recruits neural stem cells and enhances neural function,thereby providing a candidate pharmacological approach for nervous system therapy.
View Publication
产品类型:
产品号#:
73252
73254
产品名:
Metformin (Hydrochloride)
二甲双胍 (Hydrochloride)
Maynard KR and Stein E (NOV 2012)
The Journal of neuroscience : the official journal of the Society for Neuroscience 32 47 16637--50
DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex.
Down syndrome cell adhesion molecule,or DSCAM,has been implicated in many neurodevelopmental processes including axon guidance,dendrite arborization,and synapse formation. Here we show that DSCAM plays an important role in regulating the morphogenesis of cortical pyramidal neurons in the mouse. We report that DSCAM expression is developmentally regulated and localizes to synaptic plasma membranes during a time of robust cortical dendrite arborization and spine formation. Analysis of mice that carry a spontaneous mutation in DSCAM (DSCAM(del17)) revealed gross morphological changes in brain size and shape in addition to subtle changes in cortical organization,volume,and lamination. Early postnatal mutant mice displayed a transient decrease in cortical thickness,but these reductions could not be attributed to changes in neuron production or cell death. DSCAM(del17) mutants showed temporary impairments in the branching of layer V pyramidal neuron dendrites at P10 and P17 that recovered to normal by adulthood. Defects in DSCAM(del17) dendrite branching correlated with a temporal increase in apical branch spine density and lasting changes in spine morphology. At P15 and P42,mutant mice displayed a decrease in the percentage of large,stable spines and an increase in the percentage of small,immature spines. Together,our findings suggest that DSCAM contributes to pyramidal neuron morphogenesis by regulating dendrite arborization and spine formation during cortical circuit development.
View Publication
产品类型:
产品号#:
05715
产品名:
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
Aksoy I et al. (DEC 2013)
Stem Cells 31 12 2632--2646
Sox Transcription Factors Require Selective Interactions with Oct4 and Specific Transactivation Functions to Mediate Reprogramming
The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs,but Sox4,Sox5,Sox6,Sox8,Sox9,Sox11,Sox12,Sox13,and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover,the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming,albeit at low efficiency. By molecular dissection of the C-terminus of Sox17,we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK,we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Schamberger AC et al. (JUN 2014)
American journal of respiratory cell and molecular biology 50 6 1040--1052
Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-beta.
The airway epithelium constitutes an essential immunological and cytoprotective barrier to inhaled insults,such as cigarette smoke,environmental particles,or viruses. Although bronchial epithelial integrity is crucial for airway homeostasis,defective epithelial barrier function contributes to chronic obstructive pulmonary disease (COPD). Tight junctions at the apical side of epithelial cell-cell contacts determine epithelial permeability. Cigarette smoke exposure,the major risk factor for COPD,is suggested to impair tight junction integrity; however,detailed mechanisms thereof remain elusive. We investigated whether cigarette smoke extract (CSE) and transforming growth factor (TGF)-$$1 affected tight junction integrity. Exposure of human bronchial epithelial cells (16HBE14o(-)) and differentiated primary human bronchial epithelial cells (pHBECs) to CSE significantly disrupted tight junction integrity and barrier function. Specifically,CSE decreased transepithelial electrical resistance (TEER) and tight junction-associated protein levels. Zonula occludens (ZO)-1 and ZO-2 protein levels were significantly reduced and dislocated from the cell membrane,as observed by fractionation and immunofluorescence analysis. These findings were reproduced in isolated bronchi exposed to CSE ex vivo,as detected by real-time quantitative reverse-transcriptase PCR and immunohistochemistry. Combined treatment of 16HBE14o(-) cells or pHBECs with CSE and TGF-$$1 restored ZO-1 and ZO-2 levels. TGF-$$1 cotreatment restored membrane localization of ZO-1 and ZO-2 protein and prevented CSE-mediated TEER decrease. In conclusion,CSE led to the disruption of tight junctions of human bronchial epithelial cells,and TGF-$$1 counteracted this CSE-induced effect. Thus,TGF-$$1 may serve as a protective factor for bronchial epithelial cell homeostasis in diseases such as COPD.
View Publication