Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction
With the advent of increasingly sophisticated organoids,there is growing demand for technology to replicate the interactions between multiple tissues or organs. This is challenging to achieve,however,due to the varying culture conditions of the different cell types that make up each tissue. Current methods often require complicated microfluidic setups,but fragile tissue samples tend not to fare well with rough handling. Furthermore,the more complicated the human system to be replicated,the more difficult the model becomes to operate. Here,we present the development of a multi-tissue chip platform that takes advantage of the modularity and convenient handling ability of a CUBE device. We first developed a blood-brain barrier-in-a-CUBE by layering astrocytes,pericytes,and brain microvascular endothelial cells in the CUBE,and confirmed the expression and function of important tight junction and transporter proteins in the blood-brain barrier model. Then,we demonstrated the application of integrating Tissue-in-a-CUBE with a chip in simulating the in vitro testing of the permeability of a drug through the blood-brain barrier to the brain and its effect on treating the glioblastoma brain cancer model. We anticipate that this platform can be adapted for use with organoids to build complex human systems in vitro by the combination of multiple simple CUBE units. Development of platform to integrate multiple Tissue-in-a-CUBEs in a chip for tissue-tissue interaction,demonstrated by simulating the testing of the permeability and effect of a cancer drug in a BBB-Brain cancer model.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(Jan 2025)
Communications Biology 8
NLRP7 maintains the genomic stability during early human embryogenesis via mediating alternative splicing
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles,but the underlying mechanisms remain largely elusive. Here,we show that NLRP7 knockout affects the genetic stability,resulting in increased DNA damage in both human embryonic stem cells and blastoids,making embryonic cells in blastoids more susceptible to apoptosis. Mechanistically,NLRP7 can interact with factors related to alternative splicing and DNA damage response,including DDX39B,PRPF8,THRAP3 and PARP1. Moreover,NLRP7 dysfunction leads to abnormal alternative splicing of genes involved in homologous recombination in human embryonic stem cells,Such as Brca1 and Rad51. These results indicate that NLRP7-mediated Alternative splicing is potentially required for the maintenance of genome integrity during early human embryogenesis. Together,this study uncovers that NLRP7 plays an essential role in the maintenance of genetic stability during early human embryonic development by regulating alternative splicing of homologous recombination-related genes. NLRP7 plays an essential role in the maintenance of genetic stability during early human embryonic development by regulating alternative splicing of homologous recombination-related genes.
View Publication
产品类型:
产品号#:
34411
34415
34421
34425
34450
34460
85850
85857
产品名:
AggreWell™ 400 24孔板,1个
AggreWell™400 24孔板,5个
AggreWell™ 400 6孔板,1个
AggreWell™ 400 6孔板,5个
AggreWell™400 24孔板启动套装
AggreWell™ 400 6孔板启动套装
mTeSR™1
mTeSR™1
(May 2024)
Cell reports 43 6
Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue
SUMMARY Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance,there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study,we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function. Macrophage retention within the hECTs was confirmed via immunofluorescence after 28 days of cultivation. The inclusion of iM0s significantly impacted hECT function,increasing contractile force production. A potential mechanism underlying these changes was revealed by the interrogation of calcium signaling,which demonstrated the modulation of ?-adrenergic signaling in +iM0 hECTs. Collectively,these findings demonstrate that macrophages significantly enhance cardiac function in iPSC-derived hECT models,emphasizing the need to further explore their contributions not only in healthy hECT models but also in the contexts of disease and injury. In brief Lock and Graney et al. develop a human engineered cardiac tissue with an incorporated iPSC-derived macrophage population to better mimic the complex cell landscape of the native myocardium. Macrophage inclusion leads to increased contractile function of the tissue,which is attributed to macrophage stimulation of the cardiomyocyte ?-adrenergic signaling pathway. Graphical Abstract
View Publication
产品类型:
产品号#:
05310
100-0276
100-1130
产品名:
STEMdiff™ 造血试剂盒
mTeSR™ Plus
mTeSR™ Plus
(Jun 2025)
Cellular and Molecular Life Sciences: CMLS 82 1
The ADCY1-mediated cAMP signaling pathway mediates functional effects of montelukast treatment in brain organoids
Montelukast (MTK) is a drug widely used for treating allergic rhinitis and asthma. However,severe neuropsychiatric adverse events related to MTK have been reported,with limited understanding of the underlying mechanisms. Here we leveraged human forebrain organoids (hFOs) and showed that MTK exposure in hFOs downregulated the expression of genes associated with multiple neuronal functions and neuropsychiatric disorders. The following integrative analysis highlighted adenylate cyclase 1 (ADCY1),a main regulator of the cAMP signaling pathway,as a hub gene mediating the functional effects of MTK exposure. We also showed that MTK exposure resulted in a reduction of cAMP and neuroactivities,and caused neural maturation defects. These cellular phenotypes could be recapitulated by treating hFOs with ST034307,a selective ADCY1 inhibitor,or partially rescued by ADCY1 overexpression in hFOs. Together,this study underscored that MTK exposure caused neuropsychiatric effects through inhibiting the ADCY1-mediated cAMP signaling pathway.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00018-025-05764-z.
View Publication
Laminin-associated integrins mediate Diffuse Intrinsic Pontine Glioma infiltration and therapy response within a neural assembloid model
Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However,it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here,we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration,we developed a DIPG-neural assembloid model,which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model,we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover,laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally,these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-024-01765-4.
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
100-0276
100-1130
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
mTeSR™ Plus
mTeSR™ Plus
(Mar 2025)
Journal of Neuroinflammation 22
Bystander neuronal progenitors in forebrain organoids promote protective antiviral responses
Neurotropic viruses are the most common cause of infectious encephalitis and highly target neurons for infection. Our understanding of the intrinsic capacity of neuronal innate immune responses to mediate protective antiviral responses remains incomplete. Here,we evaluated the role of intercellular crosstalk in mediating intrinsic neuronal immunity and its contribution to limiting viral infection. We found that in the absence of viral antagonism,neurons transcriptionally induce robust interferon signaling and can effectively signal to uninfected bystander neurons. Yet,in two-dimensional cultures,this dynamic response did not restrict viral spread. Interestingly,this differed in the context of viral infection in three-dimensional forebrain organoids with complex neuronal subtypes and cellular organization,where we observed protective capacity. We showed antiviral crosstalk between infected neurons and bystander neural progenitors is mediated by type I interferon signaling. Using spatial transcriptomics,we then uncovered regions containing bystander neural progenitors that expressed distinct antiviral genes,revealing critical underpinnings of protective antiviral responses among neuronal subtypes. These findings underscore the importance of interneuronal communication in protective antiviral immunity in the brain and implicate key contributions to protective antiviral signaling.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03381-y.
View Publication
Alzheimer’s disease protective allele of Clusterin modulates neuronal excitability through lipid-droplet-mediated neuron-glia communication
BackgroundGenome-wide association studies (GWAS) of Alzheimer’s disease (AD) have identified a plethora of risk loci. However,the disease variants/genes and the underlying mechanisms have not been extensively studied.MethodsBulk ATAC-seq was performed in induced pluripotent stem cells (iPSCs) differentiated various brain cell types to identify allele-specific open chromatin (ASoC) SNPs. CRISPR-Cas9 editing generated isogenic pairs,which were then differentiated into glutamatergic neurons (iGlut). Transcriptomic analysis and functional studies of iGlut co-cultured with mouse astrocytes assessed neuronal excitability and lipid droplet formation.ResultsWe identified a putative causal SNP of CLU that impacted neuronal chromatin accessibility to transcription-factor(s),with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. And,neuronal CLU facilitated neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes caused astrocytes to uptake less glutamate thereby altering neuron excitability.ConclusionsFor a strong AD-associated locus near Clusterin (CLU),we connected an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-025-00840-1.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(Jul 2024)
Cell reports 43 7
Mechanomemory of nucleoplasm and RNA polymerase II after chromatin stretching by a microinjected magnetic nanoparticle force
SUMMARY Increasing evidence suggests that the mechanics of chromatin and nucleoplasm regulate gene transcription and nuclear function. However,how the chromatin and nucleoplasm sense and respond to forces remains elusive. Here,we employed a strategy of applying forces directly to the chromatin of a cell via a microinjected 200-nm anti-H2B-antibody-coated ferromagnetic nanoparticle (FMNP) and an anti-immunoglobulin G (IgG)-antibody-coated or an uncoated FMNP. The chromatin behaved as a viscoelastic gel-like structure and the nucleoplasm was a softer viscoelastic structure at loading frequencies of 0.1–5 Hz. Protein diffusivity of the chromatin,nucleoplasm,and RNA polymerase II (RNA Pol II) and RNA Pol II activity were upregulated in a chromatin-stretching-dependent manner and stayed upregulated for tens of minutes after force cessation. Chromatin stiffness increased,but the mechanomemory duration of chromatin diffusivity decreased,with substrate stiffness. These findings may provide a mechanomemory mechanism of transcription upregulation and have implications on cell and nuclear functions. Graphical abstract In brief Rashid et al. show that chromatin and nucleoplasm in cells behave as viscoelastic materials. Chromatin stretching mediates the mechanomemory of chromatin and nucleoplasm diffusivity as well as of RNA polymerase II activity. The mechanomemory of RNA polymerase II activity provides a mechanism for sustained transcription upregulation tens of minutes after force cessation.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Aug 2024)
International Journal of Oral Science 16
Caspase-11 mediated inflammasome activation in macrophages by systemic infection of
Clinical studies have shown that Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is associated with aggressive periodontitis and can potentially trigger or exacerbate rheumatoid arthritis (RA). However,the mechanism is poorly understood. Here,we show that systemic infection with A. actinomycetemcomitans triggers the progression of arthritis in mice anti-collagen antibody-induced arthritis (CAIA) model following IL-1β secretion and cell infiltration in paws in a manner that is dependent on caspase-11-mediated inflammasome activation in macrophages. The administration of polymyxin B (PMB),chloroquine,and anti-CD11b antibody suppressed inflammasome activation in macrophages and arthritis in mice,suggesting that the recognition of lipopolysaccharide (LPS) in the cytosol after bacterial degradation by lysosomes and invasion via CD11b are needed to trigger arthritis following inflammasome activation in macrophages. These data reveal that the inhibition of caspase-11-mediated inflammasome activation potentiates aggravation of RA induced by infection with A. actinomycetemcomitans. This work highlights how RA can be progressed by inflammasome activation as a result of periodontitis-associated bacterial infection and discusses the mechanism of inflammasome activation in response to infection with A. actinomycetemcomitans.
View Publication
产品类型:
产品号#:
100-0659
产品名:
EasySep™ 小鼠F4/80正选试剂盒
(Apr 2025)
Cell Death & Disease 16 1
UHRF1-mediated epigenetic reprogramming regulates glycolysis to promote progression of B-cell acute lymphoblastic leukemia
The prognosis for adult B-cell acute lymphoblastic leukemia remains unfavorable,especially in the context of relapsed and refractory disease. Exploring the molecular mechanisms underlying disease progression holds significant promise for improving clinical outcomes. In this investigation,utilizing single-cell transcriptome sequencing technology,we discerned a correlation between Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) and the progression of B-cell acute lymphoblastic leukemia. Our findings reveal a significant upregulation of UHRF1 in cases of relapsed and refractory B-cell acute lymphoblastic leukemia,thereby serving as a prognostic indicator for poor outcomes. Both deletion of UHRF1 or overexpression of its downstream target secreted frizzled-related protein 5 (SFRP5) resulted in the inhibition of leukemia cell proliferation,promoting cellular apoptosis and induction of cell cycle arrest. Our results showed that UHRF1 employs methylation modifications to repress the expression of SFRP5,consequently inducing the WNT5A-P38 MAPK-HK2 signaling axis,resulting in the augmentation of lactate,the critical metabolic product of aerobic glycolysis. Furthermore,we identified UM164 as a targeted inhibitor of UHRF1 that substantially inhibits P38 protein phosphorylation,downregulates HK2 expression,and reduces lactate production. UM164 also demonstrated antileukemic activity both in vitro and in vivo. In summary,our investigation revealed the molecular mechanisms of epigenetic and metabolic reprogramming in relapsed and refractory B-cell acute lymphoblastic leukemia and provides potential targeted therapeutic strategies to improve its inadequate prognosis.
View Publication
产品类型:
产品号#:
17754
产品名:
EasySep™ Release人CD19 正选试剂盒
(Jun 2025)
Frontiers in Immunology 16 1
Differential metabolic pathways underlie THC- and CBD-mediated inhibition of B-cell activation in both young and aged mice
ObjectiveB lymphocytes play a crucial role in immunity but also contribute to the pathogenesis of various diseases. Cannabis plants produce numerous biologically active compounds,including cannabinoids. The two most studied phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These cannabinoids exert diverse and potent biological effects primarily through the endocannabinoid system (ECS),which also plays a key role in mature B-cell function. Both the immune system and the ECS undergo age-related changes that lead to a clinically significant decline in function.MethodsThis study compares the effects of THC and CBD on B-cell activity in young and aged mice. Murine B lymphocytes were activated using lipopolysaccharide (LPS) and interleukin-4 (IL-4),and the impact of cannabinoid treatments was assessed in terms of cell phenotype,proliferation,antibody secretion,tumor necrosis factor-alpha (TNFα) secretion,extracellular signal-regulated kinase (ERK) phosphorylation,and the cellular metabolome.ResultsBoth THC and CBD exhibited dose-dependent inhibitory effects on B-cell activation in young and aged mice. However,we show here,for the first time,that the treatments induce distinct metabolic profiles. Although some metabolites,such as glucose-6-phosphate,pentose phosphate pathway (PPP) and nucleotide metabolites,were reduced by both cannabinoids,THC selectively reduced the levels of a distinct set of amino acids,while only CBD increased the levels of Citrulline and Allantoin. Additionally,the effects of THC and CBD differed between young and aged B cells,suggesting that age-related changes in the ECS may influence cannabinoid sensitivity.ConclusionsThese findings provide insights into the distinct mechanisms by which THC and CBD regulate immune activation and may open the door for investigating the mechanisms behind cannabinoids effects on the immune system. They also highlight the need for further research into phytocannabinoid-based therapies,particularly in age-specific contexts. Given the immunoregulatory properties of cannabinoids,especially CBD,tailored therapeutic strategies may enhance their clinical applications
View Publication
产品类型:
产品号#:
19844
19844RF
产品名:
EasySep™小鼠Pan-B细胞分选试剂盒
RoboSep™ 小鼠Pan-B细胞分选试剂盒
Y. Alwarawrah et al. (Aug 2025)
Frontiers in Immunology 16 11
Targeting IL-6 receptor mediated metabolic pathways to control Th17 cell differentiation and inflammatory responses
Interleukin-6 (IL-6) is a multifunctional cytokine that plays important roles in inflammation. Several studies have shown that IL-6 regulates various aspects of T cell function,including the differentiation of CD4+ T cells into the pro-inflammatory Th17 subset. Given the tight link between T cell metabolism and function,and the role of IL-6 in regulating cellular metabolism across tissues,we investigated the role of IL-6 signaling in Th17 cell metabolism. Using T cell specific IL-6 receptor (IL-6R) conditional knockout mice and littermate controls,we found that IL-6R signaling regulates the proportions of CD4+ and CD8+ T cells and drives CD4+ T cell differentiation into Th17 cells. We also found that IL-6R signaling is required for Th17 cell glycolytic metabolism. In T cell-specific IL-6R knockout mice,Th17 cells had reduced glucose uptake and glycolysis,as well as decreased expression of key glycolytic enzymes,while showing increased basal oxygen consumption. However,we also found that IL-6R signaling enhanced oxidative capacity and mitochondrial coupling efficiency in Th17 T cells. Importantly,inhibition of lactate dehydrogenase using FX11 selectively impaired Th17 cell differentiation with minimal effects on Treg cells. These findings suggest that targeting metabolic pathways regulated by IL-6R signaling can selectively inhibit inflammatory Th17 responses,offering a potential strategy for controlling IL-6 mediated inflammation.
View Publication