P. Dey et al. (Apr 2020)
Cancer Discovery 10 608-625
Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here,we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS) drives cell-autonomous expression of type I cytokine receptor complexes (IL2r?–IL4r? and IL2r?–IL13r?1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS and Th2 cells producing IL4 and IL13. Activated IL2r?–IL4r? and IL2r?–IL13r?1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic,chromatin occupancy,and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus,paracrine signaling in the tumor microenvironment plays a key role in the KRAS-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines,secreted by Th2 cells in the tumor microenvironment,can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions,providing candidate therapeutic targets in the KRAS pathway for this intractable disease.
View Publication
产品类型:
产品号#:
100-0820
100-0781
产品名:
PancreaCult™ 类器官启动培养基 (人)
PancreaCult™ 类器官生长培养基 (人)
(Nov 2024)
Nature Communications 15
The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness
Germinal center (GC) formation,which is an integrant part of humoral immunity,involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However,the contribution of these factors to humoral immunity remains undefined. Here,we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs,produce antibodies,and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically,the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells,which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development,GC formation in Peyer’s patches and TI humoral immunity,but not TD humoral immunity in the absence of Rag-GTPases. Collectively,our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells. Rag-GTPases play roles in sensing nutrient availability,and it is not fully known how they contribute to energy-consuming immunological processes such as the B cell response. Here authors show that genomic deletion fo RagA/RagB distrupts both T-dependent and T-independent humoral immune responses,independent of mechanistic target of rapamycin complex 1 but involving the transcription factors TFEB and TFE3.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Z. Li et al. (Aug 2025)
Cell Death & Disease 16 1
Targeting PRDX1 impairs acute myeloid leukemic blasts and stem cells by disrupting redox homeostasis
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis and limited therapeutic options. Leukemic stem cells (LSCs),which drive disease progression and confer resistance to therapy,pose a significant challenge to conventional treatment strategies. In this study,we identified and characterized the inhibitory mechanisms of TH37,a small molecule derived from traditional Chinese medicine,which selectively targets AML blasts and LSCs. Our analyses identified peroxiredoxin 1 (PRDX1),an enzyme that catalyzes the breakdown of hydrogen peroxide (a reactive oxygen species),as the primary molecular target of TH37. We demonstrated that TH37 directly interacts with PRDX1,inhibiting its enzymatic activity and thereby elevating intracellular reactive oxygen species levels in AML cells. PRDX1 was found to be overexpressed in AML,and its expression correlated with poor prognosis and the activation of AML- and cancer-associated pathways. Targeting PRDX1,either through lentiviral short-hairpin RNA-mediated silencing or TH37 treatment,induced apoptosis,reduced colony formation,and impaired the engraftment and growth of AML cells in immunodeficient mouse models. Furthermore,TH37 synergized with conventional chemotherapeutic agent to significantly reduce the viability and colony-forming capacity of AML cells. These findings demonstrate the critical role of PRDX1 in AML pathogenesis and highlight its potential as a key therapeutic target to improve clinical outcomes for AML patients.
View Publication
产品类型:
产品号#:
100-1569
17856
17856RF
产品名:
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
O. Drummond-Guy et al. (Mar 2025)
Frontiers in Oncology 15
Polysialic acid is upregulated on activated immune cells and negatively regulates anticancer immune activity
Suppression of anticancer immune function is a key driver of tumorigenesis. Identifying molecular pathways that inhibit anticancer immunity is critical for developing novel immunotherapeutics. One such molecule that has recently been identified is the carbohydrate polysialic acid (polySia),whose expression is dramatically upregulated on both cancer cells and immune cells in breast cancer patient tissues. The role of polySia in the anticancer immune response,however,remains incompletely understood. In this study,we profile polySia expression on both healthy primary immune cells and on infiltrating immune cells in the tumour microenvironment (TME). These studies reveal polySia expression on multiple immune cell subsets in patient breast tumors. We find that stimulation of primary T-cells and macrophages in vitro induces a significant upregulation of polySia expression. We subsequently show that polySia is appended to a range of different carrier proteins within these immune cells. Finally,we find that selective removal of polySia can significantly potentiate killing of breast cancer cells by innate immune cells. These studies implicate polySia as a significant negative regulator of anticancer immunity.
View Publication
产品类型:
产品号#:
100-0956
10981
产品名:
ImmunoCult™ XF培养基
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
E. Keltsch et al. (Jul 2025)
Immunity & Ageing : I & A 22 6
Aging modulates the immunosuppressive, polarizing and metabolic functions of blood-derived myeloid-derived suppressor cells (MDSCs)
Immunosenescence describes the gradual remodeling of immune responses,leading to disturbed immune homeostasis and increased susceptibility of older adults for infections,neoplasia and autoimmunity. Decline in cellular immunity is associated with intrinsic changes in the T cell compartment,but can be further pushed by age-related changes in cells regulating T cell immunity. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of T cell activation and function,whose induction requires chronic inflammation. Since aging is associated with low grade inflammation (inflammaging) and increased myelopoiesis,age-induced changes in MDSC induction and function in relation to T cell immunity were analyzed. MDSC numbers and functions were compared between “healthy” young and old adults,who were negatively diagnosed for severe acute and chronic diseases known to induce MDSC accumulation. MDSCs were either isolated from peripheral blood or generated in vitro from blood-derived CD14 cells. Aging was associated with significantly increased MDSC numbers in the monocytic- (M-) and polymorphonuclear (PMN-) MDSC subpopulations. MDSCs could be induced more efficiently from CD14 cells of old donors and these MDSCs inhibited CD3/28-induced T cell proliferation significantly better than MDSCs induced from young donors. Serum factors of old donors supported MDSC induction comparable to serum factors from young donors,but increased immunosuppressive activity of MDSCs was only achieved by serum from old donors. Elevated immunosuppressive activity of MDSCs from old donors was associated with major metabolic changes and increased intracellular levels of neutral and oxidized lipids known to promote immunosuppressive functions. Independent of age,MDSC-mediated suppression of T cell proliferation required direct MDSC– T cell contact. Besides their increased ability to inhibit activation-induced T cell proliferation,MDSCs from old donors strongly shift the immune response towards Th2 immunity and might thereby further contribute to impaired cell-mediated immunity during aging. These results indicate that immunosenescence of innate immunity comprises accumulation and functional changes in the MDSC compartment,which directly impacts T cell functions and contribute to age-associated impaired T cell immunity. Targeting MDSCs during aging might help to maintain functional T cell responses and increase the chance of healthy aging. The online version contains supplementary material available at 10.1186/s12979-025-00524-w.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
A. D. D. Lima et al. (Jun 2025)
Cells 14 13
Regulatory T Cells Boost Efficacy of Post-Infarction Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cell Transplants
Cell therapy is promising for heart failure treatment,with growing interest in cardiovascular progenitor cells (CPCs) from pluripotent stem cells. A major challenge is managing the immune response,due to their allogeneic source. Regulatory T cells (Treg) offer an alternative to pharmacological immunosuppression by inducing immune tolerance. This study assesses whether Treg therapy can mitigate the xeno-immune response,improving cardiac outcomes in a mouse model of human CPC intramyocardial transplantation. CPCs stimulated immune responses in allogeneic and xenogeneic settings,causing proliferation in T cell subsets. Tregs showed immunosuppressive effects on T lymphocyte populations when co-cultured with CPCs. Post infarction,CPCs were transplanted intramyocardially into an immune-competent mouse model 3 weeks after myocardial infarction. Human or murine Tregs were intravenously administered on transplantation day and three days later. Control groups received CPCs without Tregs or saline (PBS). CPCs with Tregs improved LV systolic function in three weeks,linked to reduced myocardial fibrosis and enhanced angiogenesis. This was accompanied by decreased splenocyte NK cell populations and pro-inflammatory cytokine levels in cardiac tissue. Treg therapy with CPC transplantation enhances cardiac functional and structural outcomes in mice. Though it does not directly avert graft rejection,it primarily affects NKG2D+ cytotoxic cells,indicating systemic immune modulation and remote heart repair benefits.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
M. G. Bracha et al. (Jul 2025)
Frontiers in Immunology 16 8
Mouse B cells engineered to express an anti-HPV antibody elicit anti-tumor T cell responses
Transplantation of engineered B cells has demonstrated efficacy in HIV disease models. B cell engineering may also be utilized for the treatment of cancer. Recent studies have highlighted that B cell activity is associated with favorable clinical outcomes in oncology. In mice,polyclonal B cells have been shown to elicit anti-cancer responses. As a potential novel cell therapy,we demonstrate that engineering B cells to target a tumor-associated antigen enhances polyclonal anti-tumor responses. We observe that engineered B cells expressing an anti-HPV B cell receptor internalize the antigen,enabling subsequent activation of oncoantigen-specific T cells. Secreted antibodies from engineered B cells form immune complexes,which are taken up by antigen-presenting cells to further promote T cell activation. Engineered B cells hold promise as novel,multi-modal cell therapies and open new avenues in solid tumor targeting.
View Publication
产品类型:
产品号#:
100-1003
产品名:
ImmunoCult™ 小鼠B细胞扩增试剂盒
J. Gibo et al. (jan 2005)
Laboratory investigation; a journal of technical methods and pathology 85 1 75--89
Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity.
Camostat mesilate (CM),an oral protease inhibitor,has been used clinically for the treatment of chronic pancreatitis in Japan. However,the mechanism by which it operates has not been fully understood. Our aim was to evaluate the therapeutic efficacy of CM in the experimental pancreatic fibrosis model induced by dibutyltin dichloride (DBTC),and we also determined the effect of CM on isolated monocytes and panceatic stellate cells (PSCs). In vivo,chronic pancreatitis was induced in male Lewis rats by single administration of 7 mg/kg DBTC and a special diet containing 1 mg/g CM was fed to the DBTC+CM-treated group from day 7,while the DBTC-treated group rats were fed a standard diet. At days 0,7,14 and 28,the severity of pancreatitis and fibrosis was examined histologically and enzymologically in both groups. In vitro,monocytes were isolated from the spleen of a Lewis rat,and activated with lipopolysaccharide stimulation. Thereafter,the effect of CM on monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-alpha) production from monocytes was examined. Subsequently,cultured rat PSCs were exposed to CM and tested to see whether their proliferation,MCP-1 production and procollagen alpha1 messenger RNA expression was influenced by CM. In vivo,the oral administration of CM inhibited inflammation,cytokines expression and fibrosis in the pancreas. The in vitro study revealed that CM inhibited both MCP-1 and TNF-alpha production from monocytes,and proliferation and MCP-1 production from PSCs. However,procollagen alpha1 expression in PSCs was not influenced by CM. These results suggest that CM attenuated DBTC-induced rat pancreatic fibrosis via inhibition of monocytes and PSCs activity.
View Publication
产品类型:
产品号#:
100-0552
产品名:
Z. Liu et al. (oct 2020)
Developmental cell 55 2 224--236.e6
Super-Resolution Microscopy and FIB-SEM Imaging Reveal Parental Centriole-Derived, Hybrid Cilium in Mammalian Multiciliated Cells.
Motile cilia are cellular beating machines that play a critical role in mucociliary clearance,cerebrospinal fluid movement,and fertility. In the airways,hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria,viruses,and harmful particulates. During multiciliated cell differentiation,motile cilia are templated from basal bodies,each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here,we demonstrate that among the many motile cilia of a multiciliated cell,a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells,originates from parental centrioles,and its cellular position is biased and dependent on ciliary beating. Furthermore,we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.
View Publication
产品类型:
产品号#:
05001
05022
05021
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
PneumaCult™-ALI 培养基含12 mm Transwell®插件
M. Syedbasha et al. (oct 2020)
Cell reports 33 1 108211
Interferon-$\lambda$ Enhances the Differentiation of Naive B Cells into Plasmablasts via the mTORC1 Pathway.
Type III interferon (interferon lambda [IFN-$\lambda$]) is known to be a potential immune modulator,but the mechanisms behind its immune-modulatory functions and its impact on plasmablast differentiation in humans remain unknown. Human B cells and their subtypes directly respond to IFN-$\lambda$. Using B cell transcriptome profiling,we investigate the immune-modulatory role of IFN-$\lambda$ in B cells. We find that IFN-$\lambda$-induced gene expression in B cells is steady,prolonged,and importantly,cell type specific. Furthermore,IFN-$\lambda$ enhances the mTORC1 (mammalian/mechanistic target of rapamycin complex 1) pathway in B cells activated by the B cell receptor (BCR/anti-IgM). Engagement of mTORC1 by BCR and IFN-$\lambda$ induces cell-cycle progress in B cells. Subsequently,IFN-$\lambda$ boosts the differentiation of naive B cells into plasmablasts upon activation,and the cells gain effector functions such as cytokine release (IL-6 and IL-10) and antibody production. Our study shows how IFN-$\lambda$ systematically boosts the differentiation of naive B cells into plasmablasts by enhancing the mTORC1 pathway and cell-cycle progression in activated B cells.
View Publication
产品类型:
产品号#:
19054
19054RF
产品名:
EasySep™人B细胞富集试剂盒
RoboSep™ 人B细胞富集试剂盒含滤芯吸头
Bruserud &O et al. (JUN 2002)
Haematologica 87 6 584--95
Leptin in human acute myelogenous leukemia: studies of in vivo levels and in vitro effects on native functional leukemia blasts.
BACKGROUND AND OBJECTIVES: Leptin receptors can be expressed by acute myelogenous leukemia (AML) cells,but the functional effects of leptin on native AML blasts have not been characterized in detail. We investigated systemic leptin levels in AML patients and in vitro effects of leptin on cultured AML blasts. DESIGN AND METHODS: Serum leptin levels were compared for patients with untreated AML and healthy controls. Native AML blasts were derived from a large group of consecutive patients,and effects of leptin on proliferation (suspension cultures and colony formation),constitutive cytokine secretion,differentiation and apoptosis regulation were assayed in vitro. RESULTS: Systemic leptin levels were decreased in patients with untreated AML,and leptin levels in acute leukemia patients were not altered during severe chemotherapy-induced cytopenia and complicating febrile neutropenia. In vitro studies demonstrated that leptin increased AML blast release of interleukin (IL) 1beta,IL6,tumor necrosis factor (TNF) alpha and granulocyte-macrophage colony-stimulating factor (GM-CSF). This enhancing effect showed no correlation with CD34 expression and was not dependent on the presence of serum,induction of differentiation or alteration of caspase 3 activity with decreased in vitro apoptosis. Leptin also increased spontaneous AML blast proliferation,whereas divergent effects on blast proliferation were observed in the presence of exogenous cytokines. The in vitro effects were usually observed at concentrations exceeding the systemic levels. INTERPRETATION AND CONCLUSIONS: Our results suggest that systemic leptin levels alone do not have a major influence on native AML blasts,but the systemic levels in combination with local leptin release in the bone marrow may affect the functional characteristics of these cells.
View Publication
产品类型:
产品号#:
04230
09600
09650
产品名:
MethoCult™H4230
StemSpan™ SFEM
StemSpan™ SFEM
Venu P et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 200--5
Analysis of long-term culture properties and pluripotent character of two sibling human embryonic stem cell lines derived from discarded embryos
We had earlier reported the derivation and characterization of two new sibling human embryonic stem cell lines BJNhem19 and BJNhem20,from discarded grade III embryos of Indian origin. We report here the characteristics of the two sibling cell lines after long-term continuous culture for over 2 yr during which they have been passaged over 200 times. We show that both cell lines adapt well to culture on various mouse and human feeders as well as in feeder-free conditions. The cells show normal diploid karyotype and continue to express all pluripotency markers. Both cell lines differentiate to derivatives of all three germ layers in vitro. However as reported earlier,BJNhem19 is unable to generate teratomas in nude or SCID mice or differentiate to beating cardiomyocytes when tested over several passages during long-term stable culture. On the other hand,the cardiac differentiation capacity of BJNhem20 is greatly increased,and it can generate beating cardiomyocytes that proliferate when isolated and cultured further. In conclusion,the two cell lines have maintained a stable phenotype for over 2 yr and are indeed immortal. Their derivation from grade III embryos does not seem to have any adverse effect on their long-term phenotype. The cells can be obtained for research purposes from the UK Stem Cell Bank and from the authors.
View Publication