Lyssiotis CA et al. (JUN 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 22 8912--7
Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.
Ectopic expression of defined transcription factors can reprogram somatic cells to induced pluripotent stem (iPS) cells,but the utility of iPS cells is hampered by the use of viral delivery systems. Small molecules offer an alternative to replace virally transduced transcription factors with chemical signaling cues responsible for reprogramming. In this report we describe a small-molecule screening platform applied to identify compounds that functionally replace the reprogramming factor Klf4. A series of small-molecule scaffolds were identified that activate Nanog expression in mouse fibroblasts transduced with a subset of reprogramming factors lacking Klf4. Application of one such molecule,kenpaullone,in lieu of Klf4 gave rise to iPS cells that are indistinguishable from murine embryonic stem cells. This experimental platform can be used to screen large chemical libraries in search of novel compounds to replace the reprogramming factors that induce pluripotency. Ultimately,such compounds may provide mechanistic insight into the reprogramming process.
View Publication
产品类型:
产品号#:
72782
产品名:
Kenpaullone
Henrich D et al. (NOV 2010)
Injury 41 Suppl 2 S62--8
RIA reamings and hip aspirate: a comparative evaluation of osteoprogenitor and endothelial progenitor cells.
Autologous bone grafting represents the gold standard modality to treat atrophic non-unions by virtue of its osteoinductive and osteoconductive properties. The common harvest site is the iliac crest,but there are major concerns due to limited volume and considerable donor site morbidity. Alternative autologous bone graft can be harvested from the femoral bone cavity using a newly developed 'Reamer Irrigator Aspirator' (RIA). Osseous aspirated particles can be recovered with a filter and used as auto-graft. The purpose of this study was to compare the concentration and differentiation potential of mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) harvested with the RIA technique or from the iliac crest,respectively. RIA aspirate was collected from 26 patients undergoing intramedullary nailing of femur fractures. Iliac crest aspirate was collected from 38 patients undergoing bone graft transplantation. Concentration of MSC and EPC were assessed by means of the MSC colony assay,EPC culture assay and flowcytometry (CD34,CD133,VEGF-R2),respectively. Osteogenic differentiation of MSC's was measured by von Kossa staining. Patients in both groups did not significantly differ regarding their age,gender or pre-existing health conditions. In comparison to aspirates obtained from iliac crest the RIA aspirates from the femur contained a significantly higher percentage of CD34+ progenitor cells,a significantly higher concentration of MSC and a significantly higher concentration of early EPC. The percentage of late EPC did not differ between both sites. Moreover,the capability of MSC for calcium deposition was significantly enhanced in MSC obtained with RIA. Our results show that RIA aspirate is a rich source for different types of autologous progenitor cells,which can be used to accelerate healing of bone and other musculoskeletal tissues.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Pei Y et al. (MAY 2012)
Development (Cambridge,England) 139 10 1724--33
WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition,WNT pathway mutations are associated with medulloblastoma,the most common malignant brain tumor in children. However,the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover,mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region,whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather,WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level,mutant NSCs exhibit increased expression of c-Myc,which might account for their transient proliferation,but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21,which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Nishida S et al. (JUL 2012)
The Journal of urology 188 1 294--9
Gene expression profiles of prostate cancer stem cells isolated by aldehyde dehydrogenase activity assay.
PURPOSE: Prostate cancer cells include a small population of cancer stem-like/cancer initiating cells,which have roles in cancer initiation and progression. Recently aldehyde dehydrogenase activity was used to isolate stem cells of various cancer and normal cells. We evaluated the aldehyde dehydrogenase activity of the human prostate cancer cell line 22Rv1 (ATCC®) with the ALDEFLUOR® assay and determined its potency as prostate cancer stem-like/cancer initiating cells. MATERIALS AND METHODS: The human prostate cancer cell line 22Rv1 was labeled with ALDEFLUOR reagent and analyzed by flow cytometry. ALDH1(high) and ALDH1(low) cells were isolated and tumorigenicity was evaluated by xenograft transplantation into NOD/SCID mice. Tumor sphere forming ability was evaluated by culturing in a floating condition. Invasion capability was evaluated by the Matrigel™ invasion assay. Gene expression profiling was assessed by microarrays and reverse transcriptase-polymerase chain reaction. RESULTS: ALDH1(high) cells were detected in 6.8% of 22Rv1 cells,which showed significantly higher tumorigenicity than ALDH1(low) cells in NOD/SCID mice (p textless 0.05). Gene expression profiling revealed higher expression of the stem cell related genes PROM1 and NKX3-1 in ALDH1(high) cells than in ALDH1(low) cells. ALDH1(high) cells also showed higher invasive capability and sphere forming capability than ALDH1(low) cells. CONCLUSIONS: Results indicate that cancer stem-like/cancer initiating cells are enriched in the ALDH1(high) population of the prostate cancer cell line 22Rv1. This approach may provide a breakthrough to further clarify prostate cancer stem-like/cancer initiating cells. To our knowledge this is the first report of cancer stem-like/cancer initiating cells of 22Rv1 using the aldehyde dehydrogenase activity assay.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Groß et al. (JUN 2013)
Current molecular medicine 13 5 765--776
Improved generation of patient-specific induced pluripotent stem cells using a chemically-defined and matrigel-based approach.
Reprogramming of somatic cells into patient-specific pluripotent analogues of human embryonic stem cells (ESCs) emerges as a prospective therapeutic angle in molecular medicine and a tool for basic stem cell biology. However,the combination of relative inefficiency and high variability of non-defined culture conditions precluded the use of this technique in a clinical setting and impeded comparability between laboratories. To overcome these obstacles,we sequentially devised a reprogramming protocol using one lentiviral-based polycistronic reprogramming construct,optimized for high co-expression of OCT4,SOX2,KLF4 and MYC in conjunction with small molecule inhibitors of non-permissive signaling cascades,such as transforming growth factor $\$(SB431542),MEK/ERK (PD0325901) and Rho-kinase signaling (Thiazovivin),in a defined extracellular environment. Based on human fetal liver fibroblasts we could efficiently derive induced pluripotent stem cells (iPSCs) within 14 days. We attained efficiencies of up to 10.97±1.71% resulting in 79.5- fold increase compared to non-defined reprogramming using four singular vectors. We show that the overall increase of efficiency and temporal kinetics is a combinatorial effect of improved lentiviral vector design,signaling inhibition and definition of extracellular matrix (Matrigel®) and culture medium (mTESR®1). Using this protocol,we could derive iPSCs from patient fibroblasts,which were impermissive to classical reprogramming efforts,and from a patient suffering from familial platelet disorder. Thus,our defined protocol for highly efficient reprogramming to generate patient-specific iPSCs,reflects a big step towards therapeutic and broad scientific application of iPSCs,even in previously unfeasible settings.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Mao P et al. (MAY 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 21 8644--8649
Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3.
Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However,molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further,Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway,comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3,were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover,inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last,radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers,whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together,our data suggest that two subtypes of GSCs,harboring distinct metabolic signaling pathways,represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Ou X et al. (MAY 2014)
Stem Cells 32 5 1183--1194
SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress
SIRT1,an NAD-dependent deacetylase,plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress,and has been linked to age-related reactive oxygen species (ROS) generation,which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-,than in WT mESCs. However,addition of 3-methyladenine,a widely used autophagy inhibitor,in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II,lowered expression of Beclin-1,and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs,suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs,inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress,effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways. Stem Cells 2014;32:1183-1194
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Katikireddy KR et al. (OCT 2016)
The American Journal of Pathology 186 10 2736--2750
Existence of Neural CrestDerived Progenitor Cells in Normal and Fuchs Endothelial Dystrophy Corneal Endothelium
Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma,aging,and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein,we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging,propensity to form spheres,and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2,OCT4,LGR5,TP63 (p63),as well as neural crest marker genes PSIP1 (p75(NTR)),PAX3,SOX9,AP2B1 (AP-2β),and NES,generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2,β-III tubulin,and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion,we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies.
View Publication
产品类型:
产品号#:
05835
05839
产品名:
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
Li Z-H et al. (MAR 2014)
PLoS ONE 9 3 e91260
Nardosinone Improves the Proliferation, Migration and Selective Differentiation of Mouse Embryonic Neural Stem Cells
In this study,we investigated the impact of Nardosinone,a bioactive component in Nardostachys root,on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay,bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers,respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes,as indicated by the expression of microtubule-associated protein-2 and myelin basic protein,respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion,this study reveals the regulatory effects of Nardosinone on neural stem cells,which may have significant implications for the treatment of brain injury and neurodegenerative diseases.
View Publication
产品类型:
产品号#:
05700
05702
05704
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
NeuroCult™ 分化试剂盒 (小鼠&大鼠)
Meco D et al. (AUG 2014)
Neuro-Oncology 16 8 1067--1077
Ependymoma stem cells are highly sensitive to temozolomide in vitro and in orthotopic models
BACKGROUND Ependymoma management remains challenging because of the inherent chemoresistance of this tumor. To determine whether ependymoma stem cells (SCs) might contribute to therapy resistance,we investigated the sensitivity of ependymoma SCs to temozolomide and etoposide. METHODS The efficacies of the two DNA damaging agents were explored in two ependymoma SC lines in vitro and in vivo models. RESULTS Ependymoma SC lines were highly sensitive to temozolomide and etoposide in vitro,but only temozolomide impaired tumor-initiation properties. Consistently,temozolomide but not etoposide showed significant antitumoral activity on ependymoma SC-driven subcutaneous and orthotopic xenografts by reducing the mitotic fraction. In vitro temozolomide at the EC50 (10 µM) induced accumulation of cells in the G2/M phase that was unexpectedly accompanied by downregulation of p27 and p21 without modulation of full-length p53 (FLp53). Differentiation-committed ependymoma SCs acquired resistance to temozolomide. Inhibition of proliferation was partly due to apoptosis,that occurred earlier in differentiated cells as compared to neurospheres. The activation of apoptosis correlated with an increase in p53β/γ isoforms without modulation of FLp53 under both serum-free and differentiation-promoting media. Incubation of cells in both conditions with temozolomide resulted in increased glioneuronal differentiation exhibiting elevated glial fibrillary acidic protein,galactosylceramidase,and βIII-tubulin expression compared to untreated controls. O(6)-methylguanine DNA methyltransferase (MGMT) transcript levels were very low in SCs,and were increased by treatment and,epigenetically,by differentiation through MGMT promoter unmethylation. CONCLUSION Ependymoma growth might be impaired by temozolomide through preferential depletion of a less differentiated,more tumorigenic,MGMT-negative cell population with stem-like properties.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Daynac M et al. (JUL 2013)
Stem Cell Research 11 1 516--528
Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage
Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis,generating new neurons throughout life. Until now,their isolation has not been reported,which has hampered studies of their regulatory mechanisms. We sorted by FACS quiescent NSCs and their progeny from the subventricular zone (SVZ) of adult mice according to the expression of the NSC marker LeX/CD15,the EGF receptor (EGFR) and the CD24 in combination with the vital DNA marker Hoechst 33342. Characterization of sorted cells showed that the LeX(bright)/EGFR-negative population was enriched in quiescent cells having an NSC phenotype. In contrast to proliferating NSCs and progenitors,the LeX(bright)/EGFR-negative cells,i.e. quiescent NSCs,resisted to a moderate dose of gamma-radiation (4Gy),entered the cell cycle two days after irradiation prior to EGFR acquisition and ultimately repopulated the SVZ. We further show that the GABAAR signaling regulates their cell cycle entry by using specific GABAAR agonists/antagonists and that the radiation-induced depletion of neuroblasts,the major GABA source,provoked their proliferation in the irradiated SVZ. Our study demonstrates that quiescent NSCs are specifically enriched in the LeX(bright)/EGFR-negative population,and identifies the GABAAR signaling as a regulator of the SVZ niche size by modulating the quiescence of NSCs.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
C. Imbratta et al. (apr 2019)
Scientific reports 9 1 6135
Maf deficiency in T cells dysregulates Treg - TH17 balance leading to spontaneous colitis.
The maintenance of homeostasis in the gut is a major challenge for the immune system. Here we demonstrate that the transcription factor MAF plays a central role in T cells for the prevention of gastro-intestinal inflammation. Conditional knock out mice lacking Maf in all T cells developed spontaneous late-onset colitis,correlating with a decrease of FOXP3+RORgammat+ T cells proportion,dampened IL-10 production in the colon and an increase of inflammatory TH17 cells. Strikingly,FOXP3+ specific conditional knock out mice for MAF did not develop colitis and demonstrated normal levels of IL-10 in their colon,despite the incapacity of regulatory T cells lacking MAF to suppress colon inflammation in Rag1-/- mice transferred with na{\{i}}ve CD4+ T cells. We showed that one of the cellular sources of IL-10 in the colon of these mice are TH17 cells. Thus MAF is critically involved in the maintenance of the gut homeostasis by regulating the balance between Treg and TH17 cells either at the level of their differentiation or through the modulation of their functions."
View Publication