Douaisi M et al. (FEB 2017)
Journal of immunology (Baltimore,Md. : 1950)
CD31, a Valuable Marker to Identify Early and Late Stages of T Cell Differentiation in the Human Thymus.
Although CD31 expression on human thymocytes has been reported,a detailed analysis of CD31 expression at various stages of T cell development in the human thymus is missing. In this study,we provide a global picture of the evolution of CD31 expression from the CD34(+) hematopoietic precursor to the CD45RA(+) mature CD4(+) and CD8(+) single-positive (SP) T cells. Using nine-color flow cytometry,we show that CD31 is highly expressed on CD34(+) progenitors and stays high until the early double-positive stage (CD3(-)CD4(+)CD8α(+)β(-)). After β-selection,CD31 expression levels become low to undetectable. CD31 expression then increases and peaks on CD3(high)CD4(+)CD8(+) double-positive thymocytes. However,following positive selection,CD31 expression differs dramatically between CD4(+) and CD8(+) lineages: homogeneously high on CD8 SP but lower or negative on CD4 SP cells,including a subset of CD45RA(+)CD31(-) mature CD4(+) thymocytes. CD31 expression on TCRγδ thymocytes is very similar to that of CD4 SP cells. Remarkably,there is a substantial subset of semimature (CD45RA(-)) CD4 SP thymocytes that lack CD31 expression. Moreover,FOXP3(+) and ICOS(+) cells are overrepresented in this CD31(-) subpopulation. Despite this CD31(-)CD45RA(-) subpopulation,most egress-capable mature CD45RA(+) CD4 SP thymocytes express CD31. The variations in CD31 expression appear to coincide with three major selection processes occurring during thymopoiesis: β-selection,positive selection,and negative selection. Considering the ability of CD31 to modulate the TCR's activation threshold via the recruitment of tyrosine phosphatases,our results suggest a significant role for CD31 during T cell development.
View Publication
产品类型:
产品号#:
21000
20119
20155
18098
18098RF
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
Ma D et al. (JAN 2017)
Stem cell research 18 54--56
Generation of a human induced pluripotent stem cell (iPSC) line carrying the Parkinson's disease linked LRRK2 variant S1647T.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with S1647T variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will be useful for further function studies and therapeutic screening.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang S et al. (MAR 2017)
Stem cell research 19 43--45
Derivation of human induced pluripotent stem cell (iPSC) line from a 79year old sporadic male Parkinson's disease patient.
Peripheral blood was collected from a clinically diagnosed 79-year old male sporadic Parkinson's disease patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model can be used to study the mechanism of sporadic Parkinson's disease and to test new drugs. Resource Table.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Onuma Y et al. (APR 2015)
PLoS One 10 4 e0118931
A stable chimeric fibroblast growth factor (FGF) can successfully replace basic FGF in human pluripotent stem cell culture
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however,because of the instability of bFGF,repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study,we demonstrate that a heat-stable chimeric variant of FGF,termed FGFC,can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers,global gene expression,karyotype,or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2,for maintenance of human pluripotent stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Billard E et al. (OCT 2007)
Infection and immunity 75 10 4980--9
Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion.
Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases,human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown. We recently demonstrated that dendritic cells (DCs),which are critical components of adaptive immunity,are highly susceptible to Brucella infection and are a preferential niche for the development of the bacteria. Here,we report that in contrast to several intracellular bacteria,Brucella prevented the infected DCs from engaging in their maturation process and impaired their capacities to present antigen to naïve T cells and to secrete interleukin-12. Moreover,Brucella-infected DCs failed to release tumor necrosis factor alpha (TNF-alpha),a defect involving the bacterial protein Omp25. Exogenous TNF-alpha addition to Brucella-infected DCs restored cell maturation and allowed them to present antigens. Two avirulent mutants of B. suis,B. suis bvrR and B. suis omp25 mutants,which do not express the Omp25 protein,triggered TNF-alpha production upon DC invasion. Cells infected with these mutants subsequently matured and acquired the ability to present antigens,two properties which were dramatically impaired by addition of anti-TNF-alpha antibodies. In light of these data,we propose a model in which virulent Brucella alters the maturation and functions of DCs through Omp25-dependent control of TNF-alpha production. This model defines a specific evasion strategy of the bacteria by which they can escape the immune response to chronically infect their host.
View Publication
产品类型:
产品号#:
19155
19155RF
产品名:
(Apr 2024)
Molecular Neurodegeneration 19 10
Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer’s disease
BackgroundMicroglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells,such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2),as the strongest risk factors for Alzheimer’s disease (AD) highlights the importance of microglial biology in the brain. The sequence,structure and function of several microglial proteins are poorly conserved across species,which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs).MethodsIn this study,we identified,produced,and tested novel,selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models,as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo.ResultsWe proved their efficacy in human iPSC microglia in vitro,as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-? plaques in vivo in a model of AD.ConclusionsThis study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-024-00725-9.
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
85850
85857
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
mTeSR™1
mTeSR™1
(Sep 2024)
Scientific Reports 14
Establishment of human pluripotent stem cell-derived cortical neurosphere model to study pathomechanisms and chemical toxicity in Kleefstra syndrome
In the present study,we aimed to establish and characterize a mature cortical spheroid model system for Kleefstra syndrome (KS) using patient-derived iPSC. We identified key differences in the growth behavior of KS spheroids determined by reduced proliferation marked by low Ki67 and high E-cadherin expression. Conversely,in the spheroid-based neurite outgrowth assay KS outperformed the control neurite outgrowth due to higher BDNF expression. KS spheroids were highly enriched in VGLUT1/2-expressing glutamatergic and ChAT-expressing cholinergic neurons,while TH-positive catecholamine neurons were significantly underrepresented. Furthermore,high NMDAR1 expression was also detected in the KS spheroid,similarly to other patients-derived neuronal cultures,denoting high NMDAR1 expression as a general,KS-specific marker. Control and KS neuronal progenitors and neurospheres were exposed to different toxicants (paraquat,rotenone,bardoxolone,and doxorubicin),and dose-response curves were assessed after acute exposure. Differentiation stage and compound-specific differences were detected with KS neurospheres being the most sensitive to paraquat. Altogether this study describes a robust 3D model system expressing the disease-specific markers and recapitulating the characteristic pathophysiological traits. This platform is suitable for testing developing brain-adverse environmental effects interactions,drug development,and screening towards individual therapeutic strategies.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-024-72791-4.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
J. H. Hammel et al. (Apr 2025)
APL Bioengineering 9 2
Interstitial fluid flow in an engineered human lymph node stroma model modulates T cell egress and stromal change
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells,which are highly organized and bathed in constant interstitial fluid flow (IFF). The stroma,notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs),play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation,interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN,and most existing in vitro models focus on the interactions between T cells,B cells,and dendritic cells rather than with the stroma. To address this gap,we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates,while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow,regardless of magnitude. Interestingly,3.0 μ m/s flow,but not 0.8 μ m/s flow,correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall,we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology,T cell migration,and inflammation.
View Publication
Sondergaard CS et al. (JAN 2010)
Journal of translational medicine 8 24
Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction.
UNLABELLED: Human stem cells from adult sources have been shown to contribute to the regeneration of muscle,liver,heart,and vasculature. The mechanisms by which this is accomplished are,however,still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDH(hi)Lin(-),and ALDH(lo)Lin(-) cells following transplantation to NOD/SCID or NOD/SCID beta2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDH(hi)Lin(-) stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDH(lo)Lin(-) committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was,however,a significant increase in vascular density in the central infarct zone of ALDH(hi)Lin(-) cell-treated mice,as compared to PBS and ALDH(lo)Lin(-) cell-treated mice. CONCLUSIONS: Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue,but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Siedlik JA et al. (MAR 2017)
Journal of immunological methods
T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection.
Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect,we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further,we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected,an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also,cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast,allowing cells to rest overnight in whole blood prior to stimulation through CD28,lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25),followed a similar pattern,with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
I. Neagoe et al. (APR 2018)
Stem cell research 28 105--114
The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons.
Abnormal signaling pathways mediated by N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathogenesis of various CNS disorders and have been long considered as promising points of therapeutic intervention. However,few efforts have been previously described concerning evaluation of therapeutic modulators of NMDARs and their downstream pathways in human neurons with endogenous expression of NMDARs. In the present study,we assessed expression,functionality,and subunit composition of endogenous NMDARs in human induced pluripotent stem cell (hiPSC)-derived cortical neurons (iCell Neurons and iCell GlutaNeurons). We initially confirmed the expected pharmacological response of iCell Neurons and iCell GlutaNeurons to NMDA by patch-clamp recordings. Subsequent pharmacological interrogation using GluN2 subunit-selective antagonists revealed the predominance of GluN2B in both iCell Neurons and iCell GlutaNeurons. This observation was also supported by qRT-PCR and Western blot analyses of GluN2 subunit expression as well as pharmacological experiments using positive allosteric modulators with distinct GluN2 subunit selectivity. We conclude that iCell Neurons and iCell GlutaNeurons express functional GluN2B-containing NMDARs and could serve as a valuable system for development and validation of GluN2B-modulating pharmaceutical agents.
View Publication