Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.
The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics,force generation,and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness,we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly,our approach has the potential for broad application in the study of cardiac disease,drug discovery,and cardiotoxicity screening.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Nie Z et al. (FEB 2016)
Acta biochimica et biophysica Sinica 48 2 194--201
Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression.
The prostate transmembrane protein,androgen-induced 1 (PMEPA1) has been previously shown to promote solid malignancies in a variety of cancers,but the role and mechanisms of PMEPA1 in breast cancer has not been fully addressed. Here,we found that PMEPA1 was upregulated in breast cancer cell lines as well as in a set of clinical invasive breast ductal carcinomas. Interestingly,depletion of PMEPA1 decreased breast cancer stem cell (CSC)-enriched populations,while ectopic overexpression of PMEPA1 increased breast CSC-enriched populations. Furthermore,transforming growth factor-$$ (TGF-$$) treatment was also found to upregulate PMEPA1 expression and the CSC-enriched populations in triple-negative breast cancer cell lines. TGF-$$-induced PMEPA1 expression partially contributed to TGF-$$-induced breast CSC maintenance. These findings suggest that TGF-$$-PMEPA1 axis might provide new diagnosis and therapeutic targets for breast cancer treatment.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Twu Y-C et al. (DEC 2007)
Blood 110 13 4526--34
I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha.
The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine,respectively,and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC,and that the last of these is responsible for the I branching formation on red cells. In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha),which enhances transcription of the IGnTC gene,consequently leading to formation of the I antigen. Further investigation suggested that C/EBPalpha IGnTC-activation activity is modulated at a posttranslational level,and that the phosphorylation status of C/EBPalpha may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hemopoietic cells demonstrating the determining role of C/EBPalpha in the induction of the IGnTC gene as well as in I antigen expression.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Leong KG et al. (NOV 2007)
The Journal of experimental medicine 204 12 2935--48
Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin.
Aberrant expression of Jagged1 and Notch1 are associated with poor outcome in breast cancer. However,the reason that Jagged1 and/or Notch overexpression portends a poor prognosis is unknown. We identify Slug,a transcriptional repressor,as a novel Notch target and show that elevated levels of Slug correlate with increased expression of Jagged1 in various human cancers. Slug was essential for Notch-mediated repression of E-cadherin,which resulted in beta-catenin activation and resistance to anoikis. Inhibition of ligand-induced Notch signaling in xenografted Slug-positive/E-cadherin-negative breast tumors promoted apoptosis and inhibited tumor growth and metastasis. This response was associated with down-regulated Slug expression,reexpression of E-cadherin,and suppression of active beta-catenin. Our findings suggest that ligand-induced Notch activation,through the induction of Slug,promotes tumor growth and metastasis characterized by epithelial-to-mesenchymal transition and inhibition of anoikis.
View Publication
NANOG Is a Direct Target of TGF$\$/Activin-Mediated SMAD Signaling in Human ESCs
Self-renewal of human embryonic stem cells (ESCs) is promoted by FGF and TGFbeta/Activin signaling,and differentiation is promoted by BMP signaling,but how these signals regulate genes critical to the maintenance of pluripotency has been unclear. Using a defined medium,we show here that both TGFbeta and FGF signals synergize to inhibit BMP signaling; sustain expression of pluripotency-associated genes such as NANOG,OCT4,and SOX2; and promote long-term undifferentiated proliferation of human ESCs. We also show that both TGFbeta- and BMP-responsive SMADs can bind with the NANOG proximal promoter. NANOG promoter activity is enhanced by TGFbeta/Activin and FGF signaling and is decreased by BMP signaling. Mutation of putative SMAD binding elements reduces NANOG promoter activity to basal levels and makes NANOG unresponsive to BMP and TGFbeta signaling. These results suggest that direct binding of TGFbeta/Activin-responsive SMADs to the NANOG promoter plays an essential role in sustaining human ESC self-renewal.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Khorashad JS et al. (JUN 2009)
Haematologica 94 6 861--4
The level of BCR-ABL1 kinase activity before treatment does not identify chronic myeloid leukemia patients who fail to achieve a complete cytogenetic response on imatinib.
Imatinib is currently the first line therapy for newly diagnosed patients with chronic myeloid leukemia. However,20-25% of patients do not achieve durable complete cytogenetic responses. The mechanism underlying this primary resistance is unknown,but variations in BCR-ABL1 kinase activity may play a role and can be investigated by measuring the autophosphorylation levels of BCR-ABL1 or of a surrogate target such as Crkl. In this study we used flow cytometry to investigate the in vitro inhibition of Crkl phosphorylation by imatinib in CD34(+) cells in diagnostic samples from two groups of patients distinguished by their cytogenetic response. No difference in inhibition of Crkl phosphorylation was observed in the two groups. The observation that increasing the dose of imatinib in vivo did not increase the level of cytogenetic response in some non-responders suggests that in at least a proportion of patients imatinib resistance may be due to activation of BCR-ABL1-independent pathway.
View Publication
产品类型:
产品号#:
18056
18056RF
产品名:
Meng G et al. (APR 2009)
Stem cells and development 19 4 1--31
Extra-cellular Matrix Isolated from Foreskin Fibroblasts Supports Long Term Xeno-Free Human Embryonic Stem Cell Culture.
Human embryonic stem (hES) cells hold great promise for application of human cell and tissue replacement therapy. However,the overwhelming majority of currently available hES cell lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation,propagation,and cryopreservation. Unlike feeder based cultures,which require the simultaneous growth of feeder and stem cells,resulting in mixed cell populations,stem cells grown on feeder-free systems are easily separated from the surface,presenting a pure population of cells for downstream applications. In this study we have developed a novel method to expand hES cells in xeno-free,feeder-free conditions using two different matrices derived from xeno-free human foreskin fibroblasts (XF-HFFs). Using XF-HFF-derived extracellular matrix,together with 100ng/ml recombinant bFGF supplemented HEScGRO Basal Medium,long term xeno-free expansion of hES cells is possible. Resulting hES cells were subjected to stringent tests and were found to maintain ES cell features,including morphology,pluripotency,stable karyotype,and expression of cell surface markers,for at least 20 passages. Xeno-free culturing practices are essential for the translation of basic hES cell research into the clinic. Therefore,the method presented in this study demonstrates that hES cells can be cultured in complete xeno-free conditions without the loss of pluripotency and furthermore,without the possibility of contamination from exogenous sources.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Al-Ali H et al. (MAY 2013)
ACS chemical biology 8 5 1027--36
Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements.
During digestive organogenesis,the primitive gut tube (PGT) undergoes dramatic elongation and forms a lumen lined by a single-layer of epithelium. In Xenopus,endoderm cells in the core of the PGT rearrange during gut elongation,but the morphogenetic mechanisms controlling their reorganization are undetermined. Here,we define the dynamic changes in endoderm cell shape,polarity,and tissue architecture that underlie Xenopus gut morphogenesis. Gut endoderm cells intercalate radially,between their anterior and posterior neighbors,transforming the nearly solid endoderm core into a single layer of epithelium while concomitantly eliciting radially convergent" extension within the gut walls. Inhibition of Rho/ROCK/Myosin II activity prevents endoderm rearrangements and consequently perturbs both gut elongation and digestive epithelial morphogenesis. Our results suggest that the cellular and molecular events driving tissue elongation in the PGT are mechanistically analogous to those that function during gastrulation
View Publication
产品类型:
产品号#:
73802
73804
产品名:
Rho激酶抑制剂IV (Dihydrochloride)
Rho激酶抑制剂IV (Dihydrochloride)
Kerns HM et al. (MAR 2010)
Blood 115 11 2146--55
B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia.
The immunodeficiency disorder,X-linked agammaglobulinemia (XLA),results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA,we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice,a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells,treated mice showed significant,albeit incomplete,rescue of mature B cells in the bone marrow,peripheral blood,spleen,and peritoneal cavity,and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression,viral integration,and partial functional responses,consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.
View Publication
Mossy Fiber-CA3 Synapses Mediate Homeostatic Plasticity in Mature Hippocampal Neurons
Network activity homeostatically alters synaptic efficacy to constrain neuronal output. However,it is unclear how such compensatory adaptations coexist with synaptic information storage,especially in established networks. Here,we report that in mature hippocampal neurons in vitro,network activity preferentially regulated excitatory synapses within the proximal dendrites of CA3 neurons. These homeostatic synapses exhibited morphological,functional,and molecular signatures of the specialized contacts between mossy fibers of dentate granule cells and thorny excrescences (TEs) of CA3 pyramidal neurons. In vivo TEs were also selectively and bidirectionally altered by chronic activity changes. TE formation required presynaptic synaptoporin and was suppressed by the activity-inducible kinase,Plk2. These results implicate the mossy fiber-TE synapse as an independently tunable gain control locus that permits efficacious homeostatic adjustment of mossy fiber-CA3 synapses,while preserving synaptic weights that may encode information elsewhere within the mature hippocampal circuit.
View Publication
产品类型:
产品号#:
05711
100-1281
产品名:
NeuroCult™ SM1 神经添加物
NeuroCult™ SM1 神经添加物
Sinclair L et al. (JUL 2013)
Disease Models & Mechanisms 6 4 952--963
Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection
Oxidative stress as a contributor to neuronal death during prion infection is supported by the fact that various oxidative damage markers accumulate in the brain during the course of this disease. The normal cellular substrate of the causative agent,the prion protein,is also linked with protective functions against oxidative stress. Our previous work has found that,in chronic prion infection,an apoptotic subpopulation of cells exhibit oxidative stress and the accumulation of oxidised lipid and protein aggregates with caspase recruitment. Given the likely failure of antioxidant defence mechanisms within apoptotic prion-infected cells,we aimed to investigate the role of the crucial antioxidant pathway components,superoxide dismutases (SOD) 1 and 2,in an in vitro model of chronic prion infection. Increased total SOD activity,attributable to SOD1,was found in the overall population coincident with a decrease in SOD2 protein levels. When apoptotic cells were separated from the total population,the induction of SOD activity in the infected apoptotic cells was lost,with activity reduced back to levels seen in mock-infected control cells. In addition,mitochondrial superoxide production was increased and mitochondrial numbers decreased in the infected apoptotic subpopulation. Furthermore,a pan-caspase probe colocalised with SOD2 outside of mitochondria within cytosolic aggregates in infected cells and inhibition of caspase activity was able to restore cellular levels of SOD2 in the whole unseparated infected population to those of mock-infected control cells. Our results suggest that prion propagation exacerbates an apoptotic pathway whereby mitochondrial dysfunction follows mislocalisation of SOD2 to cytosolic caspases,permitting its degradation. Eventually,cellular capacity to maintain oxidative homeostasis is overwhelmed,thus resulting in cell death.
View Publication