Awe JP et al. (NOV 2014)
Journal of visualized experiments : JoVE 93 e52158
Derivation and characterization of a transgene-free human induced pluripotent stem cell line and conversion into defined clinical-grade conditions.
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However,traces of potentially oncogenic genes remaining in actively transcribed regions of the genome,limit their potential for use in human therapeutic applications. Additionally,non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video,we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR),which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions,allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs,which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jaiswal RK et al. (MAR 2000)
The Journal of biological chemistry 275 13 9645--52
Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase.
Adult human mesenchymal stem cells are primary,multipotent cells capable of differentiating to osteocytic,chondrocytic,and adipocytic lineages when stimulated under appropriate conditions. To characterize the molecular mechanisms that regulate osteogenic differentiation,we examined the contribution of mitogen-activated protein kinase family members,ERK,JNK,and p38. Treatment of these stem cells with osteogenic supplements resulted in a sustained phase of ERK activation from day 7 to day 11 that coincided with differentiation,before decreasing to basal levels. Activation of JNK occurred much later (day 13 to day 17) in the osteogenic differentiation process. This JNK activation was associated with extracellular matrix synthesis and increased calcium deposition,the two hallmarks of bone formation. Inhibition of ERK activation by PD98059,a specific inhibitor of the ERK signaling pathway,blocked the osteogenic differentiation in a dose-dependent manner,as did transfection with a dominant negative form of MAP kinase kinase (MEK-1). Significantly,the blockage of osteogenic differentiation resulted in the adipogenic differentiation of the stem cells and the expression of adipose-specific mRNAs peroxisome proliferator-activated receptor gamma2,aP2,and lipoprotein lipase. These observations provide a potential mechanism involving MAP kinase activation in osteogenic differentiation of adult stem cells and suggest that commitment of hMSCs into osteogenic or adipogenic lineages is governed by activation or inhibition of ERK,respectively.
View Publication
产品类型:
产品号#:
72172
72174
产品名:
PD98059
PD98059
Ehnman M et al. (APR 2013)
Cancer Research 73 7 2139--2149
Distinct Effects of Ligand-Induced PDGFR and PDGFR Signaling in the Human Rhabdomyosarcoma Tumor Cell and Stroma Cell Compartments
Platelet-derived growth factor receptors (PDGFR) α and β have been suggested as potential targets for treatment of rhabdomyosarcoma,the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes,with PDGF-D as the solely overexpressed PDGFRβ ligand. By immunohistochemistry,PDGF-CC,PDGF-DD,and PDGFRα were found in tumor cells,whereas PDGFRβ was primarily detected in vascular stroma. These results are concordant with the biologic processes and pathways identified by data mining. While PDGF-CC/PDGFRα signaling associated with genes involved in the reactivation of developmental programs,PDGF-DD/PDGFRβ signaling related to wound healing and leukocyte differentiation. Clinicopathologic correlations further identified associations between PDGFRβ in vascular stroma and the alveolar subtype and with presence of metastases. Functional validation of our findings was carried out in molecularly distinct model systems,where therapeutic targeting reduced tumor burden in a PDGFR-dependent manner with effects on cell proliferation,vessel density,and macrophage infiltration. The PDGFR-selective inhibitor CP-673,451 regulated cell proliferation through mechanisms involving reduced phosphorylation of GSK-3α and GSK-3β. Additional tissue culture studies showed a PDGFR-dependent regulation of rhabdosphere formation/cancer cell stemness,differentiation,senescence,and apoptosis. In summary,the study shows a clinically relevant distinction in PDGF signaling in human rhabdomyosarcoma and also suggests continued exploration of the influence of stromal PDGFRs on sarcoma progression.
View Publication
Burkholderia pseudomallei-loaded cells act as a Trojan horse to invade the brain during endotoxemia.
Neurologic melioidosis occurs in both human and animals; however,the mechanism by which the pathogen Burkholderia pseudomallei invades the central nervous system (CNS) remains unclear. B. pseudomallei-loaded Ly6C cells have been suggested as a putative portal; however,during melioidosis,lipopolysaccharide (LPS) can drive disruption of the blood-brain barrier (BBB). This study aims to test whether the Trojan horse-like mechanism occurs during endotoxemia. The expression levels of cerebral cytokines,chemokines and cell adhesion molecules; the activation of astrocytes,microglia and endothelial cells; and the increased vascular permeability and brain-infiltrating leukocytes were evaluated using B. pseudomallei,B. thailandensis,B. cenocepacia and B. multivorans LPS-induced brains. Accordingly,different degrees of BBB damage in those brains with endotoxemia were established. The B. multivorans LPS-induced brain exhibited the highest levels of disruptive BBB according to the above mediators/indicators. Into these distinct groups of endotoxemic mice,B. pseudomallei-loaded Ly6C cells or free B. pseudomallei were adoptively transferred at equal bacterial concentrations (103 CFU). The bacterial load and number of cases of meningeal neutrophil infiltration in the brains of animals treated with B. pseudomallei-loaded Ly6C cells were higher than those in brains induced by free B. pseudomallei in any of the endotoxemic groups. In particular,these results were reproducible in B. multivorans LPS-induced brains. We suggest that B. pseudomallei-loaded cells can act as a Trojan horse and are more effective than free B. pseudomallei in invading the CNS under septic or endotoxemic conditions even when there is a high degree of BBB disruption.
View Publication
产品类型:
产品号#:
产品名:
R. M. Eichenberger et al. ( 2018)
Frontiers in immunology 9 850
Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice.
Gastrointestinal (GI) parasites,hookworms in particular,have evolved to cause minimal harm to their hosts,allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed,hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs),exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here,we analyze EVs from the rodent parasite Nippostrongylus brasiliensis,which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids,indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins,including proteins frequently present in exosomes (like tetraspanin,enolase,14-3-3 protein,and heat shock proteins),and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species,many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties,we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6,IL-1$\beta$,IFN$\gamma$,and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast,high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system,such as IBD.
View Publication
产品类型:
产品号#:
05504
06005
产品名:
MesenCult™ 成骨细胞激生试剂盒 (小鼠)
IntestiCult™ 肠道类器官生长培养基 (小鼠)
M. Epeldegui et al. (jun 2019)
Scientific reports 9 1 9371
Elevated numbers of PD-L1 expressing B cells are associated with the development of AIDS-NHL.
The risk for non-Hodgkin lymphoma (NHL) is markedly increased in persons living with human immunodeficiency virus (HIV) infection,and remains elevated in those on anti-retroviral therapy (cART). Both the loss of immunoregulation of Epstein-Barr virus (EBV) infected cells,as well as chronic B-cell activation,are believed to contribute to the genesis of AIDS-related NHL (AIDS-NHL). However,the mechanisms that lead to AIDS-NHL have not been completely defined. A subset of B cells that is characterized by the secretion of IL10,as well as the expression of the programmed cell death ligand-1 (PD-L1/CD274),was recently described. These PD-L1+ B cells can exert regulatory function,including the dampening of T-cell activation,by interacting with the program cell death protein (PD1) on target cells. The role of PD-L1+ B cells in the development of AIDS-NHL has not been explored. We assessed B cell PD-L1 expression on B cells preceding AIDS-NHL diagnosis in a nested case-control study of HIV+ subjects who went on to develop AIDS-NHL,as well as HIV+ subjects who did not,using multi-color flow cytometry. Archival frozen viable PBMC were obtained from the UCLA Multicenter AIDS Cohort Study (MACS). It was seen that the number of CD19+CD24++CD38++and CD19+PD-L1+cells was significantly elevated in cases 1-4 years prior to AIDS-NHL diagnosis,compared to controls,raising the possibility that these cells may play a role in the etiology of AIDS-NHL. Interestingly,most PD-L1+ expression on CD19+ cells was seen on CD19+CD24++CD38++ cells. In addition,we showed that HIV can directly induce PD-L1 expression on B cells through interaction of virion-associated CD40L with CD40 on B cells.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
Yasuda T et al. (FEB 2008)
Molecular and cellular neurosciences 37 2 284--97
K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells.
The functional significance of the electrophysiological properties of neural precursor cells (NPCs) was investigated using dissociated neurosphere-derived NPCs from the forebrain subventricular zone (SVZ) of adult mice. NPCs exhibited hyperpolarized resting membrane potentials,which were depolarized by the K(+) channel inhibitor,Ba(2+). Pharmacological analysis revealed two distinct K(+) channel families: Ba(2+)-sensitive K(ir) channels and tetraethylammonium (TEA)-sensitive K(v) (primarily K(DR)) channels. Ba(2+) promoted mitogen-stimulated NPC proliferation,which was mimicked by high extracellular K(+),whereas TEA inhibited proliferation. Based on gene and protein levels in vitro,we identified K(ir)4.1,K(ir)5.1 and K(v)3.1 channels as the functional K(+) channel candidates. Expression of these K(+) channels was immunohistochemically found in NPCs of the adult mouse SVZ,but was negligible in neuroblasts. It therefore appears that expression of K(ir) and K(v) (K(DR)) channels in NPCs and related changes in the resting membrane potential could contribute to NPC proliferation and neuronal lineage commitment in the neurogenic microenvironment.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
Huangfu D et al. ( 2008)
Nat Biotechnol 26 7 795--797
Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors,but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular,valproic acid (VPA),an HDAC inhibitor,improves reprogramming efficiency by more than 100-fold,using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
View Publication
产品类型:
产品号#:
72282
72284
72292
产品名:
曲古抑菌素 A(Trichostatin A)
曲古抑菌素 A(Trichostatin A)
Valproic Acid (Sodium Salt)
Tondelli B et al. (MAR 2009)
The American journal of pathology 174 3 727--35
Fetal liver cells transplanted in utero rescue the osteopetrotic phenotype in the oc/oc mouse.
Autosomal recessive osteopetrosis (ARO) is a group of genetic disorders that involve defects that preclude the normal function of osteoclasts,which differentiate from hematopoietic precursors. In half of human cases,ARO is the result of mutations in the TCIRG1 gene,which codes for a subunit of the vacuolar proton pump that plays a fundamental role in the acidification of the cell-bone interface. Functional mutations of this pump severely impair the resorption of bone mineral. Although postnatal hematopoietic stem cell transplantation can partially rescue the hematological phenotype of ARO,other stigmata of the disease,such as secondary neurological and growth defects,are not reversed. For this reason,ARO is a paradigm for genetic diseases that would benefit from effective prenatal treatment. Using the oc/oc mutant mouse,a murine model whose osteopetrotic phenotype closely recapitulates human TCIRG1-dependent ARO,we report that in utero transplantation of adult bone marrow hematopoietic stem cells can correct the ARO phenotype in a limited number of mice. Here we report that in utero injection of allogeneic fetal liver cells,which include hematopoietic stem cells,into oc/oc mouse fetuses at 13.5 days post coitum produces a high level of engraftment,and the oc/oc phenotype is completely rescued in a high percentage of these mice. Therefore,oc/oc pathology appears to be particularly sensitive to this form of early treatment of the ARO genetic disorder.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Franç et al. (SEP 2009)
Blood 114 13 2632--8
Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties.
Recent studies involving bone marrow mesenchymal stromal cells (MSCs) demonstrated that interferon (IFN)-gamma stimulation induces major histocompatibility complex (MHC) class II-mediated antigen presentation in MSCs both in vitro and in vivo. Concordantly,we investigated the ability of MSCs to present extracellular antigen through their MHC class I molecules,a process known as cross-presentation. Using an in vitro antigen presentation assay,we demonstrated that murine MSCs can cross-present soluble ovalbumin (OVA) to naive CD8(+) T cells from OT-I mice. Cross-presentation by MSC was proteasome dependent and partly dependent on transporter associated with antigen-processing molecules. Pretreatment of MSC with IFN-gamma increased cross-presentation by up-regulating antigen processing and presentation. However,although the transcription of the transporter associated with antigen processing-1 molecules and the immunoproteasome subunit LMP2 induced by IFN-gamma was inhibited by transforming growth factor-beta,the overall cross-presentation capacity of MSCs remained unchanged after transforming growth factor-beta treatment. These observations were validated in vivo by performing an immune reconstitution assay in beta(2)-microglobulin(-/-) mice and show that OVA cross-presentation by MSCs induces the proliferation of naive OVA-specific CD8(+) T cells. In conclusion,we demonstrate that MSCs can cross-present exogenous antigen and induce an effective CD8(+) T-cell immune response,a property that could be exploited as a therapeutic cell-based immune biopharmaceutic for the treatment of cancer or infectious diseases.
View Publication
产品类型:
产品号#:
19753
19753RF
产品名:
Zhou X et al. (AUG 2010)
Immunity 33 2 229--40
Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1.
T cell factor 1 (TCF-1) is a transcription factor known to act downstream of the canonical Wnt pathway and is essential for normal T cell development. However,its physiological roles in mature CD8(+) T cell responses are unknown. Here we showed that TCF-1 deficiency limited proliferation of CD8(+) effector T cells and impaired their differentiation toward a central memory phenotype. Moreover,TCF-1-deficient memory CD8(+) T cells were progressively lost over time,exhibiting reduced expression of the antiapoptotic molecule Bcl-2 and interleukin-2 receptor beta chain and diminished IL-15-driven proliferation. TCF-1 was directly associated with the Eomes allele and the Wnt-TCF-1 pathway was necessary and sufficient for optimal Eomes expression in naive and memory CD8(+) T cells. Importantly,forced expression of Eomes partly protected TCF-1-deficient memory CD8(+) T cells from time-dependent attrition. Our studies thus identify TCF-1 as a critical player in a transcriptional program that regulates memory CD8 differentiation and longevity.
View Publication
产品类型:
产品号#:
73322
产品名:
BIO-Acetoxime
Ross DD et al. (JUL 2000)
Blood 96 1 365--8
Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.
Breast cancer resistance protein (BCRP) is a novel member of the adenosine triphosphate-binding cassette superfamily of transport proteins. Transfection and enforced expression of BCRP in drug-sensitive cells confer resistance to mitoxantrone,doxorubicin,daunorubicin,and topotecan. We studied blast cells from 21 acute leukemia patients (20 acute myeloid leukemia,1 acute lymphocytic leukemia) for the expression of BCRP mRNA using a quantitative reverse-transcription polymerase chain reaction assay. BCRP mRNA expression varied more than 1000-fold among the samples tested,with low or barely detectable expression in half of the samples. Seven samples (33%) had relatively high expression of BCRP mRNA. High expression of BCRP did not correlate strongly with high expression of P-glycoprotein,suggesting that BCRP may cause resistance to certain antileukemic drugs in P-glycoprotein-negative cases. High expression of BCRP mRNA is sufficiently frequent in AML to warrant more extensive investigations to determine the relation of disease subtype and treatment outcome to BCRP expression and function.
View Publication