Mutations in the postsynaptic density signaling hub TNIK disrupt PSD signaling in human models of neurodevelopmental disorders
A large number of synaptic proteins have been recurrently associated with complex brain disorders. One of these proteins,the Traf and Nck interacting kinase (TNIK),is a postsynaptic density (PSD) signaling hub,with many variants reported in neurodevelopmental disorder (NDD) and psychiatric disease. While rodent models of TNIK dysfunction have abnormal spontaneous synaptic activity and cognitive impairment,the role of mutations found in patients with TNIK protein deficiency and TNIK protein kinase activity during early stages of neuronal and synapse development has not been characterized. Here,using hiPSC-derived excitatory neurons,we show that TNIK mutations dysregulate neuronal activity in human immature synapses. Moreover,the lack of TNIK protein kinase activity impairs MAPK signaling and protein phosphorylation in structural components of the PSD. We show that the TNIK interactome is enriched in NDD risk factors and TNIK lack of function disrupts signaling networks and protein interactors associated with NDD that only partially overlap to mature mouse synapses,suggesting a differential role of TNIK in immature synapsis in NDD.
View Publication
产品类型:
产品号#:
100-0276
100-1130
85850
85857
产品名:
mTeSR™ Plus
mTeSR™ Plus
mTeSR™1
mTeSR™1
P. E. Capendale et al. (Mar 2024)
Nature Communications 15
Parechovirus infection in human brain organoids: host innate inflammatory response and not neuro-infectivity correlates to neurologic disease
Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease,the highly prevalent PeV-A1 is not associated with CNS disease. Here,we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively,our findings align with clinical observations and suggest a role for neuroinflammation,rather than viral replication,in PeV-A3 (and E11) infection. Subject terms: Infection,Central nervous system infections,Viral host response,Innate immunity
View Publication
产品类型:
产品号#:
100-0483
100-0484
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
M. Koning et al. (Jul 2025)
NPJ Regenerative Medicine 10
Single cell transcriptomics of human kidney organoid endothelium reveals vessel growth processes and arterial maturation upon transplantation
Kidney organoids derived from human induced pluripotent stem cells lack a proper vasculature,hampering their applicability. Transplantation prevents the loss of organoid endothelial cells (ECs) observed in vitro,and promotes vascularization. In this study,we transplanted kidney organoids in chicken embryos and deployed single-cell RNA sequencing of ~12,000 organoid ECs to delineate their molecular landscape and identify key changes associated with transplantation. Transplantation significantly altered EC phenotypic composition. Consistent with angiogenesis,proliferating EC populations expanded 8 days after transplantation. Importantly,ECs underwent a major vein-to-arterial phenotypic shift. One of the transplantation-specific arterial EC populations,characterized by laminar shear stress response and Notch signalling,showed a similar transcriptome as human fetal kidney arterial/afferent arteriolar ECs. Consistently,transplantation-induced transcriptional changes involved proangiogenic and arteriogenic SOX7 transcription factor upregulation and regulon enrichment. These findings point to blood flow and candidate transcription factors such as SOX7 as possible targets to enhance kidney organoid vascularization. Subject terms: Nephrons,Transcriptomics,Angiogenesis,Angiogenesis,Stem cells,Stem-cell differentiation
View Publication
产品类型:
产品号#:
05270
05275
产品名:
STEMdiff™ APEL™2 培养基
STEMdiff™ APEL™2 培养基
Linta L et al. (APR 2013)
Stem Cells International 2013 784629
Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny
Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of,for example,ion selectivity,gating mechanism,composition,or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source,keratinocytes from plucked human hair. This comparison revealed that 26&x25; of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6&x25; were downregulated. Additionally,iPSCs express a much higher number of ion channels compared to keratinocytes. Further,to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny,namely,neurons and cardiomyocytes derived from iPS cells. To conclude,hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Garcia-Bates TM et al. (MAR 2016)
Journal of immunology (Baltimore,Md. : 1950) 196 6 2870--8
Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1.
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma has increased in recent decades,though HPV prevention vaccines may reduce this rise in the future. HPV-related cancers express the viral oncoproteins E6 and E7. The latter inactivates the tumor suppressor protein retinoblastoma (Rb),which leads to the overexpression of p16(INK4) protein,providing unique Ags for therapeutic HPV-specific cancer vaccination. We developed potential adenoviral vaccines that express a fusion protein of HPV-16 E6 and E7 (Ad.E6E7) alone or fused with p16 (Ad.E6E7p16) and also encoding an anti-programmed death (PD)-1 Ab. Human monocyte-derived dendritic cells (DC) transduced with Ad.E6E7 or Ad.E6E7p16 with or without Ad.αPD1 were used to activate autologous CD8 CTL in vitro. CTL responses were tested against naturally HPV-infected head and neck squamous cell carcinoma cells using IFN-γ ELISPOT and [(51)Cr]release assay. Surprisingly,stimulation and antitumor activity of CTL were increased after incubation with Ad.E6E7p16-transduced DC (DC.E6E7p16) compared with Ad.E6E7 (DC.E6E7),a result that may be due to an effect of p16 on cyclin-dependent kinase 4 levels and IL-12 secretion by DC. Moreover,the beneficial effect was most prominent when anti-PD-1 was introduced during the second round of stimulation (after initial priming). These data suggest that careful sequencing of Ad.E6E7.p16 with Ad.αPD1 could improve antitumor immunity against HPV-related tumors and that p16 may enhance the immunogenicity of DC,through cyclin-dependent pathways,Th1 cytokine secretion,and by adding a nonviral Ag highly overexpressed in HPV-induced cancers.
View Publication
产品类型:
产品号#:
18058
18058RF
19158
19158RF
19053
19053RF
产品名:
EasySep™人CD8+ T细胞富集试剂盒
RoboSep™ 人CD8+ T细胞富集试剂盒含滤芯吸头
Lukovic D et al. (MAY 2017)
Stem cell research 21 23--25
Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
The human iPSC cell line,RP2-FiPS4F1 (RCPFi001-A),derived from dermal fibroblasts from the patient with retinitis pigmentosa caused by the mutation of the gene PRPF8,was generated by non-integrative reprogramming technology using OCT3/4,SOX2,CMYC and KLF4 reprogramming factors.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Momburg F et al. (JUN 1987)
Cancer research 47 11 2883--91
Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues.
Monoclonal antibody HEA125 was used to study the tissue distribution of an epithelial cell surface glycoprotein of Mr 34,000 (Egp34). A large panel of normal and neoplastic tissues was examined for immunoreactivity with HEA125 by means of a sensitive immunoperoxidase technique. HEA125 labeled most epithelial cell types throughout the body but did not label any nonepithelial tissue. Major exceptions were epidermal keratinocytes,gastric parietal cells,hepatocytes,thymic cortical epithelial,and myoepithelial cells. Normal mesothelial cells were unreactive. In normal glandular epithelia and tubular adenocarcinomas exclusively the basolateral cell membranes were stained. HEA125 intensely reacted with all tested carcinoma specimens derived from colorectum,stomach,pancreas,liver,lung,mammary gland,ovary,thyroid,kidney,urinary bladder,and prostate including a number of anaplastic,diffusely infiltrating carcinomas. Metastatic lesions of these tumors were consistently positive. Generally,the staining of tumor cells was very homogeneous. The majority of squamous cell carcinomas were less strongly labeled than adenocarcinomas; keratinizing areas of the tumor masses were negative. Germ cell tumors and mesotheliomas of epithelioid type focally expressed the antigen. Egp34 was found to be absent from sarcomas,lymphomas,melanomas,and neurogenic tumors. Hence,HEA125 is a useful reagent for the distinction of carcinomas from nonepithelial neoplasms,even at very low degrees of histological differentiation. Furthermore,HEA125 allows the immunohistochemical detection of micrometastases originating from carcinomas. The antigen is detectable in formalin-fixed paraffin sections.
View Publication
产品类型:
产品号#:
01420
01421
产品名:
Nikoli&cacute et al. ( 2017)
eLife 6 1--33
Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids
The embryonic mouse lung is a widely used substitute for human lung development. For example,attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology,gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover,we identify mouse-human differences,including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.
View Publication
High-throughput robotic isolation of human iPS cell clones reveals frequent homozygous induction of identical genetic manipulations by CRISPR-Cas9
BackgroundGenome editing in human iPS cells is a powerful approach in regenerative medicine. CRISPR-Cas9 is the most common genome editing tool,but it often induces byproduct insertions and deletions in addition to the desired edits. Therefore,genome editing of iPS cells produces diverse genotypes. Existing assays mostly analyze genome editing results in cell populations,but not in single cells. However,systematic profiling of genome editing outcomes in single iPS cells was lacking. Due to the high mortality of human iPS cells as isolated single cells,it has been difficult to analyze genome-edited iPS cell clones in a high-throughput manner.MethodsIn this study,we developed a method for high-throughput iPS cell clone isolation based on the precise robotic picking of cell clumps derived from single cells grown in extracellular matrices. We first introduced point mutations into human iPS cell pools by CRISPR-Cas9. These genome-edited human iPS cells were dissociated and cultured as single cells in extracellular matrices to form cell clumps,which were then isolated using a cell-handling robot to establish genome-edited human iPS cell clones. Genome editing outcomes in these clones were analyzed by amplicon sequencing to determine the genotypes of individual iPS cell clones. We identified and distinguished the sequences of different insertions and deletions induced by CRISPR-Cas9 while determining their genotypes. We also cryopreserved the established iPS cell clones and recovered them after determining their genotypes.ResultsWe analyzed over 1,000 genome-edited iPS cell clones and found that homozygous editing was much more frequent than heterozygous editing. We also observed frequent homozygous induction of identical genetic manipulations,including insertions and deletions,such as 1-bp insertions and 8-bp deletions. Moreover,we successfully cryopreserved and then recovered genome-edited iPS cell clones,demonstrating that our cell-handling robot-based method is valuable in establishing genome-edited iPS cell clones.ConclusionsThis study revealed a previously unknown property of genome editing in human iPS cells that identical sequence manipulations tend to be induced in both copies of the target sequence in individual cells. Our new cloning method and findings will facilitate the application of genome editing to human iPS cells.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-025-04414-2.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Jul 2025)
PLOS One 20 7
Incorporation of iPSCs together with TERT-immortalized keratinocytes and fibroblasts into reconstructed human gingiva enhances phenotype of gingival epithelium
The oral mucosa plays an important role in maintaining oral and systemic health by protecting the body from harmful environmental stimuli and pathogens. Current reconstructed human gingiva models (RhG) serve as valuable testing platforms for safety and efficacy testing of dental materials,however they lack important phenotypic characteristics typical of the gingival epithelium. We aimed to determine whether incorporating induced pluripotent stem cells (iPSCs) into the hydrogel of a cell-line RhG (reconstructed epithelium on fibroblast-populated-hydrogel) would improve its phenotype. Immortalized human gingival fibroblasts were resuspended with and without iPSCs in collagen-fibrin hydrogels and gingival keratinocytes were seeded on top of the hydrogels to construct RhGs. RhGs were cultured at air-liquid interface for 1,2,4 and 6 weeks and extensively characterized by immunohistochemistry. In situ hybridization for X and Y chromosomes was conducted to identify female iPSCs and male fibroblasts in the RhGs. iPSC-RhGs showed increased epithelial thickening,rete ridge formation,increased cell proliferation and normalized expression of differentiation markers (keratins,involucrin,loricrin,SKALP/elafin) compared to standard RhGs,resulting in an epithelial phenotype very similar to the native gingiva. An increase in apoptotic cells was detected in iPSC-RhGs after 1 week air-exposed culture,and no iPSCs were detected in the hydrogels after 2 weeks air-exposed culture. The increase in apoptotic iPSCs after 1 week air-exposed culture correlated with an increase in keratinocyte proliferation responsible for the superior phenotype observed at 2 weeks.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
S. K. M. Jörgensen et al. (Aug 2025)
PLOS One 20 8
Anti-obesity compounds, Semaglutide and LiPR, and PrRP do not change the proportion of human and mouse POMC+ neurons
Anti-obesity medications (AOMs) have become one of the most prescribed drugs in human medicine. While AOMs are known to impact adult neurogenesis in the hypothalamus,their effects on the functional maturation of hypothalamic neurons remain unexplored. Given that AOMs target neurons in the Medial Basal Hypothalamus (MBH),which play a crucial role in regulating energy homeostasis,we hypothesized that AOMs might influence the functional maturation of these neurons,potentially rewiring the MBH. To investigate this,we exposed hypothalamic neurons derived from human induced pluripotent stem cells (hiPSCs) to Semaglutide and lipidized prolactin-releasing peptide (LiPR),two anti-obesity compounds. Contrary to our expectations,treatment with Semaglutide or LiPR during neuronal maturation did not affect the proportion of anorexigenic,Pro-opiomelanocortin-expressing (POMC+) neurons. Additionally,LiPR did not alter the morphology of POMC+ neurons or the expression of selected genes critical for the metabolism or development of anorexigenic neurons. Furthermore,LiPR did not impact the proportion of adult-generated POMC+ neurons in the mouse MBH. Taken together,these results suggest that AOMs do not influence the functional maturation of anorexigenic hypothalamic neurons.
View Publication