S. Song et al. (aug 2014)
Cancer research 74 15 4170--82
Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties.
Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however,the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely,shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1,verteporfin,significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties,suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.
View Publication
产品类型:
产品号#:
产品名:
S. Wang et al. ( 2020)
Scientific reports 10 1 12226
Label-free detection of rare circulating tumor cells by image analysis and machine learning.
Detection and characterization of rare circulating tumor cells (CTCs) in patients' blood is important for the diagnosis and monitoring of cancer. The traditional way of counting CTCs via fluorescent images requires a series of tedious experimental procedures and often impacts the viability of cells. Here we present a method for label-free detection of CTCs from patient blood samples,by taking advantage of data analysis of bright field microscopy images. The approach uses the convolutional neural network,a powerful image classification and machine learning algorithm to perform label-free classification of cells detected in microscopic images of patient blood samples containing white blood cells and CTCs. It requires minimal data pre-processing and has an easy experimental setup. Through our experiments,we show that our method can achieve high accuracy on the identification of rare CTCs without the need for advanced devices or expert users,thus providing a faster and simpler way for counting and identifying CTCs. With more data becoming available in the future,the machine learning model can be further improved and can serve as an accurate and easy-to-use tool for CTC analysis.
View Publication
产品类型:
产品号#:
19657
产品名:
EasySep™ Direct 人CTC富集试剂盒
Patzke C et al. (APR 2016)
The Journal of Experimental Medicine 213 4 499--515
Conditional deletion of textlessitextgreaterL1CAMtextless/itextgreater in human neurons impairs both axonal and dendritic arborization and action potential generation
textlessptextgreater Hundreds of textlessitalictextgreaterL1CAMtextless/italictextgreater gene mutations have been shown to be associated with congenital hydrocephalus,severe intellectual disability,aphasia,and motor symptoms. How such mutations impair neuronal function,however,remains unclear. Here,we generated human embryonic stem (ES) cells carrying a conditional textlessitalictextgreaterL1CAMtextless/italictextgreater loss-of-function mutation and produced precisely matching control and textlessitalictextgreaterL1CAMtextless/italictextgreater -deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones,we found that deletion of textlessitalictextgreaterL1CAMtextless/italictextgreater dramatically impaired axonal elongation and,to a lesser extent,dendritic arborization. Unexpectedly,we also detected an ∼20–50% and ∼20–30% decrease,respectively,in the levels of ankyrinG and ankyrinB protein,and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM,but not of the L1CAM point mutants R1166X and S1224L,rescued the decrease in ankyrin levels. Importantly,we found that the textlessitalictextgreaterL1CAMtextless/italictextgreater mutation selectively decreased activity-dependent Na textlesssuptextgreater+textless/suptextgreater -currents,altered neuronal excitability,and caused impairments in action potential (AP) generation. Thus,our results suggest that the clinical presentations of textlessitalictextgreaterL1CAMtextless/italictextgreater mutations in human patients could be accounted for,at least in part,by cell-autonomous changes in the functional development of neurons,such that neurons are unable to develop normal axons and dendrites and to generate normal APs. textless/ptextgreater
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Marrazzo P et al. (JAN 2016)
PloS one 11 4 e0153985
3D reconstruction of the human airway mucosa in vitro as an experimental model to study NTHi infections.
We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular,we reported that the mature model,entirely constituted of primary cells of human origin,develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary,we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Tian L et al. (APR 2016)
Stem Cell Reviews and Reports 12 4 500--508
Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids
While in vitro liver tissue engineering has been increasingly studied during the last several years,presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver,but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly,generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions,and has been inefficient so far. Towards generating a fully functional liver containing biliary system,we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver,EpCAM,is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can,not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes),in a 2D differentiation condition,but also form functional ductal structures in a 3D condition. Importantly,this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition,we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues,which may facilitate engineering of complete and functional liver tissue in the future.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Carcamo-Orive I et al. (APR 2017)
Cell stem cell 20 4 518--532.e9
Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity.
Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network,pathway,and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals,highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ma D et al. (JAN 2017)
Stem cell research 18 48--50
Derivation of human induced pluripotent stem cell (iPSC) line with LRRK2 gene R1398H variant in Parkinson's disease.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 72-year old female Parkinson's disease (PD) patient with R1398H variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model provides a good platform for studying the mechanism of PD,and also for drug testing and gene therapy studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Rawat VPS et al. (SEP 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 39 16946--51
The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia.
Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX,a putative homolog of the Xenopus xvent2 gene,is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34(+) leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT-PCR documented expression of the gene in lineage positive hematopoietic subpopulations,with the highest expression in CD33(+) myeloid cells. Notably,expression levels of VENTX were negligible in normal CD34(+)/CD38(-) or CD34(+) human progenitor cells. In contrast to this,leukemic CD34(+)/CD38(-) cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34(+) cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34(+) human progenitor cells perturbs normal hematopoietic development,promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together,these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis.
View Publication
产品类型:
产品号#:
04434
04444
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Kim E-K et al. (APR 2012)
Journal of cellular physiology 227 4 1680--7
Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase.
AMP-activated protein kinase (AMPK) is an energy-sensing kinase that has recently been shown to regulate the differentiation of preadipocytes and osteoblasts. However,the role of AMPK in stem cell differentiation is largely unknown. Using in vitro culture models,the present study demonstrates that AMPK is a critical regulatory factor for osteogenic differentiation. We observed that expression and phosphorylation of AMPK were increased during osteogenesis in human adipose tissue-derived mesenchymal stem cells (hAMSC). To elucidate the role of AMPK in osteogenic differentiation,we investigated the effect of AMPK inhibition or knockdown on mineralization of hAMSC. Compound C,an AMPK inhibitor,reduced mineralized matrix deposition and suppressed the expression of osteoblast-specific genes,including alkaline phosphatase (ALP),runt-related transcription factor 2 (RUNX2),and osteocalcin (OCN). Knockdown of AMPK by shRNA-lentivirus infection also reduced osteogenesis. In addition,inhibition or knockdown of AMPK during osteogenesis inhibited ERK phosphorylation,which is required for osteogenesis. Interestingly,inhibition of AMPK induced adipogenic differentiation of hAMSC,even in osteogenic induction medium (OIM). These results provide a potential mechanism involving AMPK activation in osteogenic differentiation of hAMSC and suggest that commitment of hAMSC to osteogenic or adipogenic lineage is governed by activation or inhibition of AMPK,respectively.
View Publication
产品类型:
产品号#:
72102
100-0246
产品名:
Dorsomorphin
白消安(Busulfan)
Orr ME et al. (JUN 2012)
PLoS ONE 7 6 e39328
Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau
Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease,we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation,rTg(tau(P301L))4510,with those expressing comparable levels of wild type human tau,rTg(tau(wt))21221. rTg(tau(P301L))4510 mice express the human tau(P301L) variant in their forebrains and display cellular,histological,biochemical and behavioral abnormalities similar to those in human FTD,including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt))21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L))4510 mice and from rTg(tau(wt))21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice,validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L))4510 cultures was hypophosphorylated in comparison with rTg(tau(wt))21221 as was seen in young adult mice. In addition,there were fewer human tau-expressing cells in rTg(tau(P301L))4510 than in rTg(tau(wt))21221 cultures. Following differentiation,neuronal filopodia-spine density was slightly greater in rTg(tau(P301L))4510 than rTg(tau(wt))21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns,the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Wu Q et al. (NOV 2017)
American journal of physiology. Lung cellular and molecular physiology 30-Nov ajplung003242017
Over-production of growth differentiation factor 15 (GDF15) promotes human rhinovirus infection and virus-induced inflammation in the lung.
Human rhinovirus (HRV) is the most common virus contributing to acute exacerbations of chronic obstructive pulmonary disease (COPD) nearly year-round,but the mechanisms have not been well elucidated. Recent clinical studies suggest that high levels of growth differentiation factor 15 (GDF15) protein in the blood are associated with an increased yearly rate of all-cause COPD exacerbations. Therefore,in the current study,we investigated whether GDF15 promotes HRV infection and virus-induced lung inflammation. We first examined the role of GDF15 in regulating host defense and HRV-induced inflammation using human GDF15 transgenic mice and cultured human GDF15 transgenic mouse tracheal epithelial cells. Next,we determined the effect of GDF15 on viral replication,antiviral responses,and inflammation in human airway epithelial cells with GDF15 knockdown and HRV infection. Finally,we explored the signaling pathways involved in airway epithelial responses to HRV infection in the context of GDF15. Human GDF15 protein over-expression in mice led to exaggerated inflammatory responses to HRV,increased infectious particle release,and decreased IFN-λ2/3 (IL-28A/B) mRNA expression in the lung. Moreover,GDF15 facilitated HRV replication and inflammation via inhibiting IFN-λ1/IL-29 protein production in human airway epithelial cells. Lastly,Smad1 cooperated with interferon regulatory factor 7 (IRF7) to regulate airway epithelial responses to HRV infection partly via GDF15 signaling. Our results reveal a novel function of GDF15 in promoting lung HRV infection and virus-induced inflammation,which may be a new mechanism for the increased susceptibility and severity of respiratory viral (i.e.,HRV) infection in cigarette smoke-exposed airways with GDF15 over-production.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
K. Ben M'Barek et al. (DEC 2017)
Science translational medicine 9 421
Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration.
Replacing defective retinal pigment epithelial (RPE) cells with those derived from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) is a potential strategy for treating retinal degenerative diseases. Early clinical trials have demonstrated that hESC-derived or hiPSC-derived RPE cells can be delivered safely as a suspension to the human eye. The next step is transplantation of hESC/hiPSC-derived RPE cells as cell sheets that are more physiological. We have developed a tissue-engineered product consisting of hESC-derived RPE cells grown as sheets on human amniotic membrane as a biocompatible substrate. We established a surgical approach to engraft this tissue-engineered product into the subretinal space of the eyes of rats with photoreceptor cell loss. We show that transplantation of the hESC-RPE cell sheets grown on a human amniotic membrane scaffold resulted in rescue of photoreceptor cell death and improved visual acuity in rats with retinal degeneration compared to hESC-RPE cells injected as a cell suspension. These results suggest that tissue-engineered hESC-RPE cell sheets produced under good manufacturing practice conditions may be a useful approach for treating diseases of retinal degeneration.
View Publication