Lavoie H et al. (JUL 2013)
Nature chemical biology 9 7 428--36
Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization.
RAF kinases have a prominent role in cancer. Their mode of activation is complex but critically requires dimerization of their kinase domains. Unexpectedly,several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and,as a result,undesirably stimulate RAS/ERK pathway-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe bioluminescence resonance energy transfer-based biosensors for the extended RAF family that enable the detection of RAF dimerization in living cells. Notably,we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization and for probing structural determinants of RAF dimerization in vivo. Our findings,which seem generalizable to other kinase families allosterically regulated by kinase domain dimerization,suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain.
View Publication
产品类型:
产品号#:
72982
72984
产品名:
AZ628
Zhou X et al. (JUL 2013)
The Journal of clinical investigation 123 7 3084--98
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here,we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide-dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α,which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore,treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys,Pkd1 conditional knockout postnatal kidneys,and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.
View Publication
产品类型:
产品号#:
73652
73654
产品名:
EX527
Malchenko S et al. (JAN 2014)
Gene 534 2 400--7
Onset of rosette formation during spontaneous neural differentiation of hESC and hiPSC colonies
In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm,which is manifested by rosette formation,with consecutive differentiation into neural progenitors and early glial-like cells. In this study,we examined the involvement of early neural markers - OTX2,PAX6,Sox1,Nestin,NR2F1,NR2F2,and IRX2 - in the onset of rosette formation,during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies. This is in contrast to the conventional way of studying rosette formation,which involves induction of neuronal differentiation and the utilization of embryoid bodies. Here we show that OTX2 is highly expressed at the onset of rosette formation,when rosettes comprise no more than 3-5 cells,and that its expression precedes that of established markers of early neuronal differentiation. Importantly,the rise of OTX2 expression in these cells coincides with the down-regulation of the pluripotency marker OCT4. Lastly,we show that cells derived from rosettes that emerge during spontaneous differentiation of hESCs or hiPSCs are capable of differentiating into dopaminergic neurons in vitro,and into mature-appearing pyramidal and serotonergic neurons weeks after being injected into the motor cortex of NOD-SCID mice. ?? 2013 Elsevier B.V.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
60048
60048.1
85850
85857
85870
85875
产品名:
抗GFAP抗体,克隆2E1.E9
抗GFAP抗体,clone 2E1.E9
mTeSR™1
mTeSR™1
Kanak MA et al. ( 2014)
Transplantation 98 5 578--584
Alleviation of instant blood-mediated inflammatory reaction in autologous conditions through treatment of human islets with NF-κB inhibitors.
BACKGROUND: The instant blood-mediated inflammatory response (IBMIR) has been shown as a major factor that causes damage to transplanted islets. Withaferin A (WA),an inhibitor of nuclear factor (NF) κB,was shown to suppress the inflammatory response in islets and improve syngeneic islet graft survival in mice. We investigated how treating islets with NF-κB inhibitors affected IBMIR using an in vitro human autologous blood islet model. METHODS: Human islets were pretreated with or without NF-κB inhibitors WA or CAY10512 before mixing autologous blood in a miniaturized in vitro tube model. Plasma samples were collected at multiple time points and used for the measurement of C-peptide,proinsulin,thrombin-antithrombin (TAT) complex,and a panel of proinflammatory cytokines. Infiltration of neutrophils into islets was analyzed using immunohistochemistry. RESULTS: Rapid release of C-peptide and proinsulin was observed 3 hr after mixing islets and blood in the control group,but not in the NF-κB inhibitor-treated groups,whereas TAT levels were elevated in all three groups with a peak at 6 hr. Significant elevation of proinflammatory cytokines was observed in the control group after 3 hr,but not in the treatment groups. Significant inhibition of neutrophil infiltration was also observed in the WA group compared with the control (Ptextless0.001) and CAY10512 (Ptextless0.001) groups. CONCLUSIONS: A miniaturized in vitro tube model can be useful in investigating IBMIR. The presence of NF-κB inhibitor could alleviate IBMIR,thus improving the survival of transplanted islets. Protection of islets in the peritransplant phase may improve long-term graft outcomes.
View Publication
产品类型:
产品号#:
73022
产品名:
Chavez A et al. (APR 2015)
Nature Methods 12 4 326--328
The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However,modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator,VP64-p65-Rta (VPR),fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes,targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Olmez I et al. (JUN 2015)
Journal of Cellular and Molecular Medicine 19 6 1262--1272
Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth
Emerging evidence shows that glioblastoma multiforme (GBM) originates from cancer stem cells (CSCs). Characterization of CSC-specific signalling pathways would help identify new therapeutic targets and perhaps lead to the development of more efficient therapies selectively targeting CSCs. Here; we successfully dedifferentiated two patient-derived GBM cell lines into CSC-like cells (induced glioma stem cells,iGSCs) through expression of Oct4,Sox2 and Nanog transcription factors. Transformed cells exhibited significant suppression of epidermal growth factor receptor and its downstream pathways. Compared with parental GBM cells,iGSCs formed large neurospheres even in the absence of exogenous mitogens; they exhibited significant sensitivity to salinomycin and chemoresistance to temozolomide. Further characterization of iGSCs revealed induction of NOTCH1 and Wnt/β-catenin signalling and expression of CD133,CD44 and ALDH1A1. Our results indicate that iGSCs may help us understand CSC physiology and lead to development of potential therapeutic interventions aimed at differentiating tumour cells to render them more sensitive to chemotherapy or other standard agents.
View Publication
产品类型:
产品号#:
05750
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
NeuroCult™ NS-A 基础培养基(人)
mTeSR™1
mTeSR™1
Akizu N et al. (MAY 2015)
Nature genetics 47 5 528--34
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability,with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia,coarsened facial features and intellectual disability,due to truncating mutations in the sorting nexin gene SNX14,encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate,a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma,accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Li J et al. (DEC 2015)
Biomedical microdevices 17 6 105
Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture.
The generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres,which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution,as well as the resulting PCL microsphere size,are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight. Higher viscosity and Q d/Q c lead to the formation of larger droplets,within two observed formation modes: dripping and jetting. At low viscosity of dispersed phase and Q d/Q c,the microfluidic device is operated in dripping mode,which generates droplets and microspheres with greater size uniformity. Solutions with lower molecular weight PCL have lower viscosity,resulting in a wider concentration range for the dripping mode. When coated with extracellular matrix (ECM) proteins,the fabricated PCL microspheres are demonstrated capable of supporting the expansion of human embryonic stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang P et al. (DEC 2015)
Molecular autism 6 1 55
CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment.
BACKGROUND Disruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions,and its targets are enriched with ASD-associated genes. METHODS To further understand the molecular links between CHD8 functions and ASD,we have applied the CRISPR/Cas9 technology to knockout one copy of CHD8 in induced pluripotent stem cells (iPSCs) to better mimic the loss-of-function status that would exist in the developing human embryo prior to neuronal differentiation. We then carried out transcriptomic and bioinformatic analyses of neural progenitors and neurons derived from the CHD8 mutant iPSCs. RESULTS Transcriptome profiling revealed that CHD8 hemizygosity (CHD8 (+/-)) affected the expression of several thousands of genes in neural progenitors and early differentiating neurons. The differentially expressed genes were enriched for functions of neural development,$$-catenin/Wnt signaling,extracellular matrix,and skeletal system development. They also exhibited significant overlap with genes previously associated with autism and schizophrenia,as well as the downstream transcriptional targets of multiple genes implicated in autism. Providing important insight into how CHD8 mutations might give rise to macrocephaly,we found that seven of the twelve genes associated with human brain volume or head size by genome-wide association studies (e.g.,HGMA2) were dysregulated in CHD8 (+/-) neural progenitors or neurons. CONCLUSIONS We have established a renewable source of CHD8 (+/-) iPSC lines that would be valuable for investigating the molecular and cellular functions of CHD8. Transcriptomic profiling showed that CHD8 regulates multiple genes implicated in ASD pathogenesis and genes associated with brain volume.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Dafinca R et al. (APR 2016)
Stem cells (Dayton,Ohio) 34 8 2016
C9orf72 Hexanucleotide Expansions are Associated with Altered ER Calcium Homeostasis and Stress Granule Formation in iPSC-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS),accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions,differentiated these to functional motor and cortical neurons and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons,decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis,reduced levels of the anti-apoptotic protein Bcl-2,increased endoplasmic reticulum (ER) stress and reduced mitochondrial membrane potential. Furthermore,C9orf72 motor neurons,and also cortical neurons,show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats,which describes a novel pathogenic link between C9orf72 mutations,dysregulation of calcium signalling and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia (FTD). This article is protected by copyright. All rights reserved.
View Publication
Self-organization of the human embryo in the absence of maternal tissues.
Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here,we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis. These include segregation of the pluripotent embryonic and extra-embryonic lineages,and morphogenetic rearrangements leading to generation of a bilaminar disc,formation of a pro-amniotic cavity within the embryonic lineage,appearance of the prospective yolk sac,and trophoblast differentiation. Using human embryos and human pluripotent stem cells,we show that the reorganization of the embryonic lineage is mediated by cellular polarization leading to cavity formation. Together,our results indicate that the critical remodelling events at this stage of human development are embryo-autonomous,highlighting the remarkable and unanticipated self-organizing properties of human embryos.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cindric Vranesic A et al. (MAY 2016)
Human Molecular Genetics May 11 ddw140
Characterization of SKAP/kinastrin isoforms: the N-terminus defines tissue specificity and Pontin binding
Small Kinetochore-Associated Protein (SKAP)/Kinastrin is a multifunctional protein with proposed roles in mitosis,apoptosis and cell migration. Exact mechanisms underlying its activities in these cellular processes are not completely understood. SKAP is predicted to have different isoforms,however,previous studies did not differentiate between them. Since distinct molecular architectures of protein isoforms often influence their localization and functions,this study aimed to examine the expression profile and functional differences between SKAP isoforms in human and mouse. Analyses of various human tissues and cells of different origin by RT-PCR,and by Western blotting and immunocytochemistry applying newly generated anti-SKAP monoclonal antibodies revealed that human SKAP exists in two protein isoforms: ubiquitously expressed SKAP16 and testis/sperm-specific SKAP1. In mouse,SKAP1 expression is detectable in testis at 4 weeks postnatally,when the first wave of spermatogenesis in mice is complete and the elongated spermatids are present in the testes. Furthermore,we identified Pontin as a new SKAP1 interaction partner. SKAP1 and Pontin co-localized in the flagellar region of human sperm suggesting a functional relevance for SKAP1-Pontin interaction in sperm motility. Since most previous studies on SKAP were performed with the testis-specific isoform SKAP1,our findings provide a new basis for future studies on the role of SKAP in both human somatic cells and male germ cells,including studies on male fertility.
View Publication