Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression.
Blood consists of different cell populations with distinct functions and correspondingly,distinct gene expression profiles. In this study,global miRNA expression profiling was performed across a panel of nine human immune cell subsets (neutrophils,eosinophils,monocytes,B cells,NK cells,CD4 T cells,CD8 T cells,mDCs and pDCs) to identify cell-type specific miRNAs. mRNA expression profiling was performed on the same samples to determine if miRNAs specific to certain cell types down-regulated expression levels of their target genes. Six cell-type specific miRNAs (miR-143; neutrophil specific,miR-125; T cells and neutrophil specific,miR-500; monocyte and pDC specific,miR-150; lymphoid cell specific,miR-652 and miR-223; both myeloid cell specific) were negatively correlated with expression of their predicted target genes. These results were further validated using an independent cohort where similar immune cell subsets were isolated and profiled for both miRNA and mRNA expression. miRNAs which negatively correlated with target gene expression in both cohorts were identified as candidates for miRNA/mRNA regulatory pairs and were used to construct a cell-type specific regulatory network. miRNA/mRNA pairs formed two distinct clusters in the network corresponding to myeloid (nine miRNAs) and lymphoid lineages (two miRNAs). Several myeloid specific miRNAs targeted common genes including ABL2,EIF4A2,EPC1 and INO80D; these common targets were enriched for genes involved in the regulation of gene expression (ptextless9.0E-7). Those miRNA might therefore have significant further effect on gene expression by repressing the expression of genes involved in transcriptional regulation. The miRNA and mRNA expression profiles reported in this study form a comprehensive transcriptome database of various human blood cells and serve as a valuable resource for elucidating the role of miRNA mediated regulation in the establishment of immune cell identity.
View Publication
产品类型:
产品号#:
17953
17953RF
18058
18058RF
19061
19061RF
19062
19062RF
19257
19257RF
19055
19055RF
100-0710
产品名:
EasySep™人CD8+ T细胞分选试剂盒
RoboSep™ 人CD8+ T细胞分选试剂盒
EasySep™人髓样DC富集试剂盒
RoboSep™ 人髓样DC富集试剂盒
EasySep™人浆细胞样DC富集试剂盒
RoboSep™ 人浆细胞样DC富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
EasySep™人CD8+ T细胞分选试剂盒
Yin D et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 247--259
Comparison of neural differentiation potential of human pluripotent stem cell lines using a quantitative neural differentiation protocol.
Neural differentiation of human embryonic (ES) and induced pluripotent (iPS) stem cell lines has been used for research in early human development,drug discovery,and cell replacement therapies. It is critical to establish generic differentiation protocols to compare the neural specification potential of each individually derived pluripotent stem cell line and identify the efficacious lines for research and therapeutic use. Here,we describe a reproducible and quantitative protocol to assess the neural progenitor (NP) generation of human pluripotent stem cell lines. This method includes a robust and well-defined neural inducing platform for Pax6(+) neural rosette (neuroectodermal cells) generation,propagation,and subsequent differentiation into nestin(+) NPs. A side-by-side comparison under common culture conditions among three human ES cell lines,TE03,TE06,and BG01V,and one iPS cell line,HD02,showed highly variable efficiency in their differentiation into NPs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
van den Akker E et al. (SEP 2010)
Haematologica 95 9 1594--8
The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples.
The study of human erythropoiesis in health and disease requires a robust culture system that consistently and reliably generates large numbers of immature erythroblasts that can be induced to differentiate synchronously. We describe a culture method modified from Leberbauer et al. (2005) and obtain a homogenous population of erythroblasts from peripheral blood mononuclear cells (PBMC) without prior purification of CD34(+) cells. This pure population of immature erythroblasts can be expanded to obtain 4x10(8) erythroblasts from 1x10(8) PBMC after 13-14 days in culture. Upon synchronized differentiation,high levels of enucleation (80-90%) and low levels of cell death (textless10%) are achieved. We compared the yield of erythroblasts obtained from PBMC,CD34(+) cells or PBMC depleted of CD34(+) cells and show that CD34(-) cells represent the most significant early erythroid progenitor population. This culture system may be particularly useful for investigating the pathophysiology of anemic patients where only small blood volumes are available.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Lumelsky N et al. (MAY 2001)
Science (New York,N.Y.) 292 5520 1389--94
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Although the source of embryonic stem (ES) cells presents ethical concerns,their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas,insulin is produced and secreted by specialized structures,islets of Langerhans. Diabetes,which affects 16 million people in the United States,results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice,the insulin-producing cells undergo rapid vascularization and maintain a clustered,islet-like organization.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Abdelwahab SF et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 25 15006--10
HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses.
CD4+ T cells are required for immunity against many viral infections,including HIV-1 where a positive correlation has been observed between strong recall responses and low HIV-1 viral loads. Some HIV-1-specific CD4+ T cells are preferentially infected with HIV-1,whereas others escape infection by unknown mechanisms. One possibility is that some CD4+ T cells are protected from infection by the secretion of soluble HIV-suppressive factors,although it is not known whether these factors are produced during primary antigen-specific responses. Here,we show that soluble suppressive factors are produced against CXCR4 and CCR5 isolates of HIV-1 during the primary immune response of human CD4+ T cells. This activity requires antigenic stimulation of naïve CD4+ T cells. One anti-CXCR4 factor is macrophage-derived chemokine (chemokine ligand 22,CCL22),and anti-CCR5 factors include macrophage inflammatory protein-1 alpha (CCL3),macrophage inflammatory protein-1 beta (CCL4),and RANTES (regulated upon activation of normal T cells expressed and secreted) (CCL5). Intracellular staining confirms that CD3+CD4+ T cells are the source of the prototype HIV-1-inhibiting chemokines CCL22 and CCL4. These results show that CD4+ T cells secrete an evolving HIV-1-suppressive activity during the primary immune response and that this activity is comprised primarily of CC chemokines. The data also suggest that production of such factors should be considered in the design of vaccines against HIV-1 and as a mechanism whereby the host can control infections with this virus.
View Publication
产品类型:
产品号#:
09500
09600
09650
19155
19155RF
产品名:
BIT 9500血清替代物
StemSpan™ SFEM
StemSpan™ SFEM
Fang H et al. (APR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 8 4966--71
Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T cells.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans,the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-,strain-,and species-specific,which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line,Jurkat,is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells,whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover,anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well,cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT,but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically,anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells,thereby blocking functions that are pivotal in the regulation of immune responses.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
Valenti MT et al. (DEC 2008)
Bone 43 6 1084--92
Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells.
MSCs are known to have an extensive proliferative potential and ability to differentiate in various cell types. Osteoblastic differentiation from mesenchymal progenitor cells is an important step of bone formation,though the pattern of gene expression during differentiation is not yet well understood. Here,to investigate the possibility to obtain a model for in vitro bone differentiation using mesenchymal stem cells (hMSCs) from human subjects non-invasively,we developed a method to obtain hMSCs-like cells from peripheral blood by a two step method that included an enrichment of mononuclear cells followed by depletion of unwanted cells. Using these cells,we analyzed the expression of transcription factor genes (runt-related transcription factor 2 (RUNX2) and osterix (SP7)) and bone related genes (osteopontin (SPP1),osteonectin (SPARC) and collagen,type I,alpha 1 (COLIA1)) during osteoblastic differentiation. Our results demonstrated that hMSCs can be obtained from peripheral blood and that they are able to generate CFU-F and to differentiate in osteoblast and adipocyte; in this study,we also identified a possible gene expression timing during osteoblastic differentiation that provided a powerful tool to study bone physiology.
View Publication
产品类型:
产品号#:
15128
15168
产品名:
RosetteSep™人间充质干细胞富集抗体混合物
RosetteSep™人间充质干细胞富集抗体混合物
Thirant C et al. (JAN 2011)
PloS one 6 1 e16375
Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors.
BACKGROUND: Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs),thought to account for tumorigenesis and therapeutic resistance,have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples,regardless of their histopathologies and grades of malignancy (57% of embryonal tumors,57% of low-grade gliomas and neuro-glial tumors,70% of ependymomas,91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (textgreater7 self-renewals),whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities,the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05,chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013,log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers,the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. CONCLUSIONS/SIGNIFICANCE: In brain tumors affecting adult patients,TSCs have been isolated only from high-grade gliomas. In contrast,our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Hassiotou F et al. (OCT 2012)
Stem cells (Dayton,Ohio) 30 10 2164--2174
Breastmilk is a novel source of stem cells with multilineage differentiation potential.
The mammary gland undergoes significant remodeling during pregnancy and lactation,which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here,we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4,SOX2,NANOG,known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts,a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium,they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore,hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer,with potential use in bioengineering and tissue regeneration.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Thatava T et al. (JAN 2013)
Molecular therapy : the journal of the American Society of Gene Therapy 21 1 228--239
Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells.
Nuclear reprogramming of adult somatic tissue enables embryo-independent generation of autologous,patient-specific induced pluripotent stem (iPS) cells. Exploiting this emergent regenerative platform for individualized medicine applications requires the establishment of bioequivalence criteria across derived pluripotent lines and lineage-specified derivatives. Here,from individual patients with type 1 diabetes (T1D) multiple human iPS clones were produced and prospectively screened using a battery of developmental markers to assess respective differentiation propensity and proficiency in yielding functional insulin (INS)-producing progeny. Global gene expression profiles,pluripotency expression patterns,and the capacity to differentiate into SOX17- and FOXA2-positive definitive endoderm (DE)-like cells were comparable among individual iPS clones. However,notable intrapatient variation was evident upon further guided differentiation into HNF4α- and HNF1β-expressing primitive gut tube,and INS- and glucagon (GCG)-expressing islet-like cells. Differential dynamics of pluripotency-associated genes and pancreatic lineage-specifying genes underlined clonal variance. Successful generation of glucose-responsive INS-producing cells required silencing of stemness programs as well as the induction of stage-specific pancreatic transcription factors. Thus,comprehensive fingerprinting of individual clones is mandatory to secure homogenous pools amenable for diagnostic and therapeutic applications of iPS cells from patients with T1D.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Liu Y et al. (APR 2014)
British journal of cancer 110 8 2063--2071
Lack of correlation of stem cell markers in breast cancer stem cells.
BACKGROUND Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers,identify the same population of cells,or equate to therapeutic response is controversial. METHODS We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo,comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin,docetaxol and radiotherapy. RESULTS CD24,CD44,ALDH and SOX2 expression,the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo,cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers,although ER-negative cells accumulate. CONCLUSIONS Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications,rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Halder D et al. ( 2015)
Molecular bioSystems
Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells.
An investigation was conducted to demonstrate that neurodazine (Nz) and neurodazole (Nzl),two imidazole-based small molecules,promote neuronal differentiation in both neuroblastoma and fibroblast cells. The results show that differentiated cells generated by treatment with Nz and Nzl express neuron-specific markers. The ability of Nz and Nzl to induce neurogenesis of neuroblastoma and fibroblast cells was found to be comparable to those of the known neurogenic factors,retinoic acid and trichostatin A. In addition,the cells differentiated by Nz and Nzl are observed to express different isoforms of glutamate receptors. The results of signaling pathway studies reveal that two substances enhance neurogenesis in neuroblastoma cells by activating Wnt and Shh signaling pathways and neurogenesis in fibroblast cells by mainly activating the Wnt signaling pathway. Observations made in the present study suggest that Nz and Nzl will serve as chemical tools to generate specific populations of neuronal cells from readily available and simply manageable cells.
View Publication