Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: a novel mechanism in Takotsubo cardiomyopathy
Background: Takotsubo cardiomyopathy (TTC) is marked by an acute,transient,and reversible left ventricular systolic dysfunction triggered by stress,with endothelial dysfunction being one of its pathophysiological mechanisms. However,the precise molecular mechanism underlying the interaction between endothelial cells and cardiomyocytes during TTC remains unclear. This study reveals that exosomal miRNAs derived from endothelial cells exposed to catecholamine contribute to ion channel dysfunction in the setting of TTC. Methods: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with epinephrine (Epi) or exosomes (Exo) from Epi-treated human cardiac microvascular endothelial cells (HCMECs) or Exo derived from HCMECs transfected with miR-126-3p. The immunofluorescence staining,flow cytometry,qPCR,single-cell contraction,intracellular calcium transients,patch-clamp,dual luciferase reporter assay and western blot were performed for the study. Results: Modeling TTC with high doses of epinephrine (Epi) treatment in hiPSC-CMs shows suppression of depolarization velocity (Vmax),prolongation of action potential duration (APD),and induction of arrhythmic events. Exo derived from HCMECs treated with Epi (Epi-exo) mimicked or enhanced the effects of Epi. Epi exposure led to elevated levels of miR-126-3p in both HCMECs and their exosomes. Exo enriched with miR-126-3p demonstrated similar effects as Epi-exo,establishing the crucial role of miR-126-3p in the mechanism of Epi-exo. Dual luciferase reporter assay coupled with gene mutation techniques identified that miR-126-3p was found to target the regulator of G-protein signaling 3 (RGS3) gene. Western blot and qPCR analyses confirmed that miR-126-3p-mimic reduced RGS3 expression in both HCMECs and hiPSC-CMs,indicating miR-126-3p inhibits RGS3 signaling. Additionally,miR-126-3p levels were significantly higher in the serum of TTC patients compared to healthy controls and patients who had recovered from TTC. Conclusions: Our study is the first to reveal that exosomal miR-126-3p,originating from endothelial cells,contributes to ion channel dysfunction by regulating RGS3 signaling in cardiomyocytes. These findings provide new perspectives on the pathogenesis of TTC and suggest potential therapeutic targets for treatment.
View Publication
产品类型:
产品号#:
05990
产品名:
TeSR™-E8™
Jin HK et al. (MAY 2002)
The Journal of clinical investigation 109 9 1183--91
Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span.
Types A and B Niemann-Pick disease (NPD) are lysosomal storage disorders resulting from loss of acid sphingomyelinase (ASM) activity. We have used a knockout mouse model of NPD (ASMKO mice) to evaluate the effects of direct intracerebral transplantation of bone marrow-derived mesenchymal stem cells (MSCs) on the progression of neurological disease in this disorder. MSCs were transduced with a retroviral vector to overexpress ASM and were injected into the hippocampus and cerebellum of 3-week-old ASMKO pups. Transplanted cells migrated away from the injection sites and survived at least 6 months after transplantation. Seven of 8 treated mice,but none of the untreated controls,survived for textgreater or = 7 months after transplant. Survival times were greater in sex-matched than in sex-mismatched transplants. Transplantation significantly delayed the Purkinje cell loss that is characteristic of NPD,although the protective effect declined with distance from the injection site. Overall ASM activity in brain homogenates was low,but surviving Purkinje cells contained the retrovirally expressed human enzyme,and transplanted animals showed a reduction in cerebral sphingomyelin. These results reveal the potential of treating neurodegenerative lysosomal storage disorders by intracerebral transplantation of bone marrow-derived MSCs.
View Publication
产品类型:
产品号#:
05350
产品名:
Delaney C et al. (OCT 2005)
Blood 106 8 2693--9
Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells.
Although significant advances have been made over the last decade with respect to our understanding of stem cell biology,progress has been limited in the development of successful techniques for clinically significant ex vivo expansion of hematopoietic stem and progenitor cells. We here describe the effect of Notch ligand density on induction of Notch signaling and subsequent cell fate of human CD34+CD38- cord blood progenitors. Lower densities of Delta1(ext-IgG) enhanced the generation of CD34+ cells as well as CD14+ and CD7+ cells,consistent with early myeloid and lymphoid differentiation,respectively. However,culture with increased amounts of Delta1(ext-IgG) induced apoptosis of CD34+ precursors resulting in decreased cell numbers,without affecting generation of CD7+ cells. RNA interference studies revealed that the promotion of lymphoid differentiation was primarily mediated by Delta1 activation of Notch1. Furthermore,enhanced generation of NOD/SCID repopulating cells was seen following culture with lower but not higher densities of ligand. These studies indicate critical,quantitative aspects of Notch signaling in affecting hematopoietic precursor cell-fate outcomes and suggest that density of Notch ligands in different organ systems may be an important determinant in regulating cell-fate outcomes. Moreover,these findings contribute to the development of methodology for manipulation of hematopoietic precursors for therapeutic purposes.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Hideshima T et al. (MAY 2006)
Blood 107 10 4053--62
Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.
Perifosine is a synthetic novel alkylphospholipid,a new class of antitumor agents which targets cell membranes and inhibits Akt activation. Here we show that baseline phosphorylation of Akt in multiple myeloma (MM) cells is completely inhibited by perifosine [octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate] in a time- and dose-dependent fashion,without inhibiting phosphoinositide-dependent protein kinase 1 phosphorylation. Perifosine induces significant cytotoxicity in both MM cell lines and patient MM cells resistant to conventional therapeutic agents. Perifosine does not induce cytotoxicity in peripheral blood mononuclear cells. Neither exogenous interleukin-6 (IL-6) nor insulinlike growth factor 1 (IGF-1) overcomes Perifosine-induced cytotoxicity. Importantly,Perifosine induces apoptosis even of MM cells adherent to bone marrow stromal cells. Perifosine triggers c-Jun N-terminal kinase (JNK) activation,followed by caspase-8/9 and poly (ADP)-ribose polymerase cleavage. Inhibition of JNK abrogates perifosine-induced cytotoxicity,suggesting that JNK plays an essential role in perifosine-induced apoptosis. Interestingly,phosphorylation of extracellular signal-related kinase (ERK) is increased by perifosine; conversely,MEK inhibitor synergistically enhances Perifosine-induced cytotoxicity in MM cells. Furthermore,perifosine augments dexamethasone,doxorubicin,melphalan,and bortezomib-induced MM cell cytotoxicity. Finally,perifosine demonstrates significant antitumor activity in a human plasmacytoma mouse model,associated with down-regulation of Akt phosphorylation in tumor cells. Taken together,our data provide the rationale for clinical trials of perifosine to improve patient outcome in MM.
View Publication
产品类型:
产品号#:
15129
15169
产品名:
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
RosetteSep™人多发性骨髓瘤细胞富集抗体混合物
McKenna KC and Kapp JA (AUG 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 3 1599--608
Accumulation of immunosuppressive CD11b+ myeloid cells correlates with the failure to prevent tumor growth in the anterior chamber of the eye.
The purpose of these studies is to determine why an immunogenic tumor grows unchecked in the anterior chamber (a.c.) of the eye. The OVA-expressing EL4 tumor,E.G7-OVA,was injected into the a.c. or skin of immunocompetent and immunodeficient mice. Tumor growth and tumor-specific immune responses were monitored. Ocular tumor-infiltrating leukocytes were characterized phenotypically and functionally. Growth of E.G7-OVA was inhibited when limiting numbers of cells were injected in the skin but not in the a.c. of C57BL/6 mice,although both routes primed OVA-specific immune responses,which prevented the growth of a subsequent injection with E.G7-OVA in the skin or opposite eye. Tumor regression was OVA-specific because growth of the parental EL-4 tumor was not inhibited in primed mice. E.G7-OVA growth in the skin was not inhibited in immunodeficient Rag(-/-) or CD8 T cell-deficient mice,suggesting that CD8(+) CTLs mediate tumor elimination. CD8(+) T cell numbers were significantly increased in eyes of mice primed with E.G7-OVA,but few were detected in primary ocular tumors. Nevertheless,growth of E.G7-OVA was retarded in the a.c. of TCR-transgenic OT-I mice,and CD8(+) T cell numbers were increased within eyes,suggesting that tumor-specific CD8(+) CTLs migrated into and controlled primary ocular tumor growth. E.G7-OVA did not lose antigenicity or become immunosuppressive after 13 days of growth in the eye. However,CD11b(+) cells accumulated in primary ocular tumors and contained potent immunosuppressive activity when assayed in vitro. Thus,CD11b(+) cells that accumulate within the eye as tumors develop in the a.c. may contribute to immune evasion by primary ocular tumors by inhibiting CTLs within the eye.
View Publication
产品类型:
产品号#:
18770
18770RF
18554
18554RF
18564
18564RF
产品名:
Law JH et al. (JAN 2010)
PloS one 5 9
Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability.
The Y-box binding protein-1 (YB-1) is an oncogenic transcription/translation factor that is activated by phosphorylation at S102 whereby it induces the expression of growth promoting genes such as EGFR and HER-2. We recently illustrated by an in vitro kinase assay that a novel peptide to YB-1 was highly phosphorylated by the serine/threonine p90 S6 kinases RSK-1 and RSK-2,and to a lesser degree PKCα and AKT. Herein,we sought to develop this decoy cell permeable peptide (CPP) as a cancer therapeutic. This 9-mer was designed as an interference peptide that would prevent endogenous YB-1(S102) phosphorylation based on molecular docking. In cancer cells,the CPP blocked P-YB-1(S102) and down-regulated both HER-2 and EGFR transcript level and protein expression. Further,the CPP prevented YB-1 from binding to the EGFR promoter in a gel shift assay. Notably,the growth of breast (SUM149,MDA-MB-453,AU565) and prostate (PC3,LNCap) cancer cells was inhibited by ∼90% with the CPP. Further,treatment with this peptide enhanced sensitivity and overcame resistance to trastuzumab in cells expressing amplified HER-2. By contrast,the CPP had no inhibitory effect on the growth of normal immortalized breast epithelial (184htert) cells,primary breast epithelial cells,nor did it inhibit differentiation of hematopoietic progenitors. These data collectively suggest that the CPP is a novel approach to suppressing the growth of cancer cells while sparing normal cells and thereby establishes a proof-of-concept that blocking YB-1 activation is a new course of cancer therapeutics.
View Publication
产品类型:
产品号#:
05601
18056
18056RF
04435
04445
产品名:
EpiCult™-B 人培养基
MethoCult™H4435富集
MethoCult™H4435富集
Na YJ et al. (SEP 2007)
Biochemical pharmacology 74 5 780--6
[4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03) inhibits SCF/c-kit signaling in 501mel human melanoma cells and abolishes melanin production in mice and brownish guinea pigs.
It is well known that c-kit is related to pigmentation as well as to the oncology target protein. The objective of this study was to discover a skin-whitening agent that regulates c-kit activity. We have developed a high-throughput screening system using recombinant human c-kit protein. Approximately 10,000 synthetic compounds were screened for their effect on c-kit activity. Phenyl-imidazole sulfonamide derivatives showed inhibitory activity on c-kit phosphorylation in vitro. The effects of one derivative,[4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03),on stem-cell factor (SCF)/c-kit cellular signaling in 501mel human melanoma cells were examined further. Pretreatment of 501mel cells with ISCK03 inhibited SCF-induced c-kit phosphorylation dose dependently. ISCK03 also inhibited p44/42 ERK mitogen-activated protein kinase (MAPK) phosphorylation,which is known to be involved in SCF/c-kit downstream signaling. However ISCK03 did not inhibit hepatocyte growth factor (HGF)-induced phosphorylation of p44/42 ERK proteins. To determine the in vivo potency of ISCK03,it was orally administered to depilated C57BL/6 mice. Interestingly,oral administration of ISCK03 induced the dose-dependent depigmentation of newly regrown hair,and this was reversed with cessation of ISCK03 treatment. Finally,to investigate whether the inhibitory effect of ISCK03 on SCF/c-kit signaling abolished UV-induced pigmentation,ISCK03 was applied to UV-induced pigmented spots on brownish guinea pig skin. The topical application of ISCK03 promoted the depigmentation of UV-induced hyperpigmented spots. Fontana-Masson staining analysis showed epidermal melanin was diminished in spots treated with ISCK03. These results indicate that phenyl-imidazole sulfonamide derivatives are potent c-kit inhibitors and might be used as skin-whitening agents.
View Publication
产品类型:
产品号#:
73732
73734
产品名:
ISCK03
Fiskus W et al. (SEP 2009)
Blood 114 13 2733--43
Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells.
The polycomb repressive complex (PRC) 2 contains 3 core proteins,EZH2,SUZ12,and EED,in which the SET (suppressor of variegation-enhancer of zeste-trithorax) domain of EZH2 mediates the histone methyltransferase activity. This induces trimethylation of lysine 27 on histone H3,regulates the expression of HOX genes,and promotes proliferation and aggressiveness of neoplastic cells. In this study,we demonstrate that treatment with the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) depletes EZH2 levels,and inhibits trimethylation of lysine 27 on histone H3 in the cultured human acute myeloid leukemia (AML) HL-60 and OCI-AML3 cells and in primary AML cells. DZNep treatment induced p16,p21,p27,and FBXO32 while depleting cyclin E and HOXA9 levels. Similar findings were observed after treatment with small interfering RNA to EZH2. In addition,DZNep treatment induced apoptosis in cultured and primary AML cells. Furthermore,compared with treatment with each agent alone,cotreatment with DZNep and the pan-histone deacetylase inhibitor panobinostat caused more depletion of EZH2,induced more apoptosis of AML,but not normal CD34(+) bone marrow progenitor cells,and significantly improved survival of nonobese diabetic/severe combined immunodeficiency mice with HL-60 leukemia. These findings indicate that the combination of DZNep and panobinostat is effective and relatively selective epigenetic therapy against AML cells.
View Publication
产品类型:
产品号#:
72322
72324
产品名:
3-Deazaneplanocin A
3-Deazaneplanocin A
Frecha C et al. (OCT 2009)
Blood 114 15 3173--80
Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors.
Up to now,no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes,which hampers its application in gene therapy and immunotherapy areas. Here,we report that LVs incorporating measles virus (MV) glycoproteins,H and F,on their surface allowed transduction of 50% of quiescent B cells,which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover,the naive and memory phenotypes of transduced resting B cells were maintained. Importantly,H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells,B-cell chronic lymphocytic leukemia cells,blocked in G(0)/G(1) early phase of the cell cycle. Thus,H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.
View Publication
产品类型:
产品号#:
05350
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
M. G. Booty et al. (feb 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 4 929--940
Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8+ T Cell Responses with Antitumor Activity.
CD8+ T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8+ T cell responses,therapeutic approaches to generate Ag-specific CD8+ T cell responses have had limited success. Here,we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8+ T cells by diverse cell types. In murine dendritic cells (DCs),squeezed DCs were ˆ¼1000-fold more potent at eliciting CD8+ T cell responses than DCs cross-presenting the same amount of protein Ag. The approach also enabled engineering of less conventional APCs,such as T cells,for effective priming of CD8+ T cells in vitro and in vivo. Mixtures of immune cells,such as murine splenocytes,also elicited CD8+ T cell responses in vivo when squeezed with Ag. We demonstrate that squeezing enables effective MHC class I presentation by human DCs,T cells,B cells,and PBMCs and that,in clinical scale formats,the system can squeeze up to 2 billion cells per minute. Using the human papillomavirus 16 (HPV16) murine model,TC-1,we demonstrate that squeezed B cells,T cells,and unfractionated splenocytes elicit antitumor immunity and correlate with an influx of HPV-specific CD8+ T cells such that >80% of CD8s in the tumor were HPV specific. Together,these findings demonstrate the potential of cytosolic Ag delivery to drive robust CD8+ T cell responses and illustrate the potential for an autologous cell-based vaccine with minimal turnaround time for patients.
View Publication
产品类型:
产品号#:
18954
19844
18954RF
19051
19051RF
19844RF
产品名:
EasySep™ 小鼠CD19正选试剂盒 II
EasySep™小鼠Pan-B细胞分选试剂盒
RoboSep™ 小鼠CD19正选试剂盒II
EasySep™人T细胞富集试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
RoboSep™ 小鼠Pan-B细胞分选试剂盒
D. Bautista et al. ( 2020)
Frontiers in immunology 11 736
Differential Expression of IgM and IgD Discriminates Two Subpopulations of Human Circulating IgM+IgD+CD27+ B Cells That Differ Phenotypically, Functionally, and Genetically.
The origin and function of blood IgM+IgD+CD27+ B cells is controversial,and they are considered a heterogeneous population. Previous staining of circulating B cells of healthy donors with rotavirus fluorescent virus-like particles allowed us to differentiate two subsets of IgM+IgD+CD27+: IgMhi and IgMlo B cells. Here,we confirmed this finding and compared the phenotype,transcriptome,in vitro function,and Ig gene repertoire of these two subsets. Eleven markers phenotypically discriminated both subsets (CD1c,CD69,IL21R,CD27,MTG,CD45RB,CD5,CD184,CD23,BAFFR,and CD38) with the IgMhi phenotypically resembling previously reported marginal zone B cells and the IgMlo resembling both na{\{i}}ve and memory B cells. Transcriptomic analysis showed that both subpopulations clustered close to germinal center-experienced IgM only B cells with a Principal Component Analysis but differed in expression of 78 genes. Moreover IgMhi B cells expressed genes characteristic of previously reported marginal zone B cells. After stimulation with CpG and cytokines significantly (p {\textless} 0.05) higher frequencies (62.5{\%}) of IgMhi B cells proliferated compared with IgMlo B cells (35.37{\%}) and differentiated to antibody secreting cells (14.22{\%} for IgMhi and 7.19{\%} for IgMlo). IgMhi B cells had significantly (p {\textless} 0.0007) higher frequencies of mutations in IGHV and IGKV regions IgMlo B cells had higher usage of IGHJ6 genes (p {\textless} 0.0001) and both subsets differed in their HCDR3 properties. IgMhi B cells shared most of their shared IGH clonotypes with IgM only memory B cells and IgMlo B cells with IgMhi B cells. These results support the notion that differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells with the IgMhi B cells having similarities with previously described marginal zone B cells that passed through germinal centers and the IgMlo B cells being the least differentiated amongst the IgM+CD27+ subsets."
View Publication
Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research,with great potential for the use of hPSC-derived RGCs for studies of human retinal development,in vitro disease modeling,drug discovery,as well as their potential use for cell replacement therapeutics. Of all these possibilities,the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention,due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies,many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus,to further advance this field of research,in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein,which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK,along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs,and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs,while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together,these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1,contributing to the degeneration of RGCs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-024-01872-2.
View Publication