Genome editing in spinocerebellar ataxia type 3 cells improves Golgi apparatus structure
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disease caused by repeat expansion of the CAG trinucleotide within exon 10 of the ATXN3 gene. This mutation results in the production of an abnormal ataxin-3 protein containing an extended polyglutamine tract,referred to as mutant ataxin-3. In this study,we investigated the therapeutic potential of CRISPR/Cas9-mediated genome editing for SCA3. First,we designed a specific single-guide RNA targeting the ATXN3 gene and constructed the corresponding targeting vector. Induced pluripotent stem cells (iPSCs) derived from a SCA3 patient were then electroporated with the CRISPR/Cas9 components. Positive clones were screened and validated by PCR and Sanger sequencing to obtain genome-editing iPSCs (GE-iPSCs). Subsequently,the pluripotency of GE-iPSCs was confirmed,and the effects of genome editing on mutant ataxin-3 protein expression and Golgi apparatus morphology were assessed using Western blotting and immunofluorescence analyses. Our results demonstrated that targeted insertion of polyadenylation signals (PAS) upstream of the abnormal CAG repeats effectively suppressed the production of mutant ataxin-3. This intervention also reduced the formation of neuronal nuclear inclusions in differentiated neurons,restored the structural integrity of the Golgi apparatus (which exhibited a loose and enlarged morphology in SCA3 cells),and increased the expression levels of Golgi structural proteins (GM130 and GORASP2). In conclusion,our findings indicate that the targeted insertion of PAS upstream of the abnormal CAG repeats in the ATXN3 gene represents a promising therapeutic strategy for SCA3 through genome editing.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-93369-8.
View Publication
产品类型:
产品号#:
08581
08582
85850
85857
产品名:
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
mTeSR™1
mTeSR™1
S. G. Kellaway et al. (Feb 2024)
Nature Communications 15
Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth
Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations,maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However,patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here,we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model,we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity. Subject terms: Cancer stem cells,Acute myeloid leukaemia,Target validation
View Publication
产品类型:
产品号#:
04437
04447
产品名:
MethoCult™表达
MethoCult™表达
J. N. Contessa et al. (may 2008)
Cancer research 68 10 3803--9
Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells.
Receptor tyrosine kinases (RTK) are therapeutic targets for the treatment of malignancy. However,tumor cells develop resistance to targeted therapies through the activation of parallel signaling cascades. Recent evidence has shown that redundant or compensatory survival signals responsible for resistance are initiated by nontargeted glycoprotein RTKs coexpressed by the cell. We hypothesized that disrupting specific functions of the posttranslational machinery of the secretory pathway would be an effective strategy to target both primary and redundant RTK signaling. Using the N-linked glycosylation inhibitor,tunicamycin,we show that expression levels of several RTKS (EGFR,ErbB2,ErbB3,and IGF-IR) are exquisitely sensitive to inhibition of N-linked glycosylation. Disrupting this synthetic process reduces both cellular protein levels and receptor activity in tumor cells through retention of the receptors in the endoplasmic reticulum/Golgi compartments. Using U251 glioma and BXPC3 pancreatic adenocarcinoma cell lines,two cell lines resistant to epidermal growth factor receptor-targeted therapies,we show that inhibiting N-linked glycosylation markedly reduces RTK signaling through Akt and radiosensitizes tumor cells. In comparison,experiments in nontransformed cells showed neither a reduction in RTK-dependent signaling nor an enhancement in radiosensitivity,suggesting the potential for a therapeutic ratio between tumors and normal tissues. This study provides evidence that enzymatic steps regulating N-linked glycosylation are novel targets for developing approaches to sensitize tumor cells to cytotoxic therapies.
View Publication
产品类型:
产品号#:
100-0570
100-0571
产品名:
衣霉素
衣霉素
Y. P. Zhu et al. (AUG 2018)
Cell reports 24 9 2329--2341.e8
Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow.
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however,unipotent neutrophil progenitors are not well defined. Here,we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly,we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models,including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases,including cancer.
View Publication
产品类型:
产品号#:
17951
17951RF
100-0695
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
Madissoon E et al. (JUL 2016)
Scientific reports 6 28995
Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos.
PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes,ARGFX,CPHX1,CPHX2,DPRX,DUXA,DUXB,NOBOX,TPRX1 and TPRX2,were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1,CPHX2,ARGFX) or repressors (DPRX,DUXA,TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Loh KMM et al. (JUL 2016)
Cell 166 2 451--468
Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types
Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence,comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end,here,we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages,including bone,muscle,and heart. We defined the extrinsic signals controlling each binary lineage decision,enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%???99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in??vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation,a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively,this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. Video Abstract
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hasegawa K et al. (DEC 2011)
Stem Cells Translational Medicine 1 1 18--28
Wnt Signaling Orchestration with a Small Molecule DYRK Inhibitor Provides Long-Term Xeno-Free Human Pluripotent Cell Expansion
An optimal culture system for human pluripotent stem cells should be fully defined and free of animal components. To date,most xeno-free culture systems require human feeder cells and/or highly complicated culture media that contain activators of the fibroblast growth factor (FGF) and transforming growth factor-β (TGFβ) signaling pathways,and none provide for replacement of FGF/TGFβ ligands with chemical compounds. The Wnt/β-catenin signaling pathway plays an important role in mouse embryonic stem cells in leukemia inhibitory factor-independent culture; however,the role of Wnt/β-catenin signaling in human pluripotent stem cell is still poorly understood and controversial because of the dual role of Wnts in proliferation and differentiation. Building on our previous investigations of small molecules modulating Wnt/β-catenin signaling in mouse embryonic stem cells,we identified a compound,ID-8,that could support Wnt-induced human embryonic stem cell proliferation and survival without differentiation. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) is the target of the small molecule ID-8. Its role in human pluripotent cell renewal was confirmed by DYRK knockdown in human embryonic stem cells. Using Wnt and the DYRK inhibitor ID-8,we have developed a novel and simple chemically defined xeno-free culture system that allows for long-term expansion of human pluripotent stem cells without FGF or TGFβ activation. These culture conditions do not include xenobiotic supplements,serum,serum replacement,or albumin. Using this culture system,we have shown that several human pluripotent cell lines maintained pluripotency (textgreater20 passages) and a normal karyotype and still retained the ability to differentiate into derivatives of all three germ layers. This Wnt-dependent culture system should provide a platform for complete replacement of growth factors with chemical compounds.
View Publication
产品类型:
产品号#:
72502
产品名:
ID-8
Srinivasakumar N et al. (DEC 2013)
PeerJ 1 e224
Gammaretroviral vector encoding a fluorescent marker to facilitate detection of reprogrammed human fibroblasts during iPSC generation.
Induced pluripotent stem cells (iPSCs) are becoming mainstream tools to study mechanisms of development and disease. They have a broad range of applications in understanding disease processes,in vitro testing of novel therapies,and potential utility in regenerative medicine. Although the techniques for generating iPSCs are becoming more straightforward,scientists can expend considerable resources and time to establish this technology. A major hurdle is the accurate determination of valid iPSC-like colonies that can be selected for further cloning and characterization. In this study,we describe the use of a gammaretroviral vector encoding a fluorescent marker,mRFP1,to not only monitor the efficiency of initial transduction but also to identify putative iPSC colonies through silencing of mRFP1 gene as a consequence of successful reprogramming.
View Publication
产品类型:
产品号#:
05854
05855
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mFreSR™
mFreSR™
mTeSR™1
mTeSR™1
(Mar 2024)
iScience 27 4
Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level
SummaryMolecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation,presence of a putative ciliary margin zone,emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data,we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development,and to show that chromatin accessibility is highly correlated to the developing human retina,but with some differences in the temporal emergence and abundance of some of the retinal neurons. Graphical abstract Highlights•Single cell analyses reveal putative ciliary margin (pCM) presence in retinal organoids•PCM harbors early RPCs which differentiate to late RPCs and retinal neurons•Single cell ATAC-seq data reveal novel TF binding motifs in RPCs and retinal neurons•RO development largely recapitulates retinogenesis Genetics; Molecular biology; Neuroscience; Cell biology; Omics
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
P. W. Burridge et al. ( 2016)
Nature medicine 22 5 547--56
Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity.
Doxorubicin is an anthracycline chemotherapy agent effective in treating a wide range of malignancies,but it causes a dose-related cardiotoxicity that can lead to heart failure in a subset of patients. At present,it is not possible to predict which patients will be affected by doxorubicin-induced cardiotoxicity (DIC). Here we demonstrate that patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can recapitulate the predilection to DIC of individual patients at the cellular level. hiPSC-CMs derived from individuals with breast cancer who experienced DIC were consistently more sensitive to doxorubicin toxicity than hiPSC-CMs from patients who did not experience DIC,with decreased cell viability,impaired mitochondrial and metabolic function,impaired calcium handling,decreased antioxidant pathway activity,and increased reactive oxygen species production. Taken together,our data indicate that hiPSC-CMs are a suitable platform to identify and characterize the genetic basis and molecular mechanisms of DIC.
View Publication
产品类型:
产品号#:
100-0558
100-0559
产品名:
阿霉素 (Hydrochloride)
阿霉素 (Hydrochloride)
S. Misiti et al. (jul 2005)
Journal of cellular physiology 204 1 286--96
3,5,3'-Triiodo-L-thyronine enhances the differentiation of a human pancreatic duct cell line (hPANC-1) towards a beta-cell-Like phenotype.
The thyroid hormone,3,5,3'-Triiodo-L-thyronine (T3),is essential for growth,differentiation,and regulation of metabolic functions in multicellular organisms,although the specific mechanisms of this control are still unknown. In this study,treatment of a human pancreatic duct cell line (hPANC-1) with T3 blocks cell growth by an increase of cells in G(0)/G(1) cell cycle phase and enhances morphological and functional changes as indicated by the marked increase in the synthesis of insulin and the parallel decrease of the ductal differentiation marker cytokeratin19. Expression analysis of some of the genes regulating pancreatic beta-cell differentiation revealed a time-dependent increase in insulin and glut2 mRNA levels in response to T3. As last step of the acquisition of a beta-cell-like phenotype,we present evidence that thyroid hormones are able to increase the release of insulin into the culture medium. In conclusion,our results suggest,for the first time,that thyroid hormones induce cell cycle perturbations and play an important role in the process of transdifferentiation of a human pancreatic duct line (hPANC-1) into pancreatic-beta-cell-like cells. These findings have important implications in cell-therapy based treatment of diabetes and may provide important insights in the designing of novel therapeutic agents to restore normal glycemia in subjects with diabetes.
View Publication