L. Yang et al. (OCT 2018)
Toxicology and applied pharmacology 362 105--115
Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis.
CD4+ T cells,especially T-helper (Th) cells (Th1,Th2 and Th17) and regulatory T cells (Treg) play pivotal role in the pathogenesis of multiple sclerosis (MS),a demyelinating autoimmune disease occurring in central nervous system (CNS). Astragaloside IV (ASI,CAS: 84687-43-4) is one of the saponins isolated from Astragalus membranceus,a traditional Chinese medicine with immunomodulatory effect. So far,whether ASI has curative effect on experimental autoimmune encephalomyelitis (EAE),an animal model of MS,and how it affects the subsets of CD4+ T cells,as well as the underlying mechanism have not been clearly elucidated. In the present study,ASI was found to ameliorate the progression and hamper the recurrence of EAE effectively in the treatment regimens. It significantly reduced the demyelination and inflammatory infiltration of CNS in EAE mice by suppressing the percentage of Th1 and Th17 cells,which was closely associated with the inhibition of JAK/STAT and NF-$\kappa$B signaling pathways. ASI also increased the percentage of Treg cells in spleen and CNS,which was accompanied by elevated Foxp3. However,in vitro experiments disclosed that ASI could regulate the differentiation of Th17 and Treg cells but not Th1 cells. In addition,it induced the apoptosis of MOG-stimulated CD4+ T cells probably through modulating STAT3/Bcl-2/Bax signaling pathways. Together,our findings suggested that ASI can modulate the differentiation of autoreactive CD4+ T cells and is a potential prodrug or drug for the treatment of MS and other similar autoimmune diseases.
View Publication
产品类型:
产品号#:
18952
18952RF
19765
19765RF
产品名:
EasySep™ 小鼠CD4正选试剂盒 II
RoboSep™ 小鼠CD4正选试剂盒II
EasySep™小鼠Naïve CD4+ T细胞分选试剂盒
RoboSep™ 小鼠Naïve CD4+ T细胞分选试剂盒
(Nov 2024)
Antioxidants 13 11
An In Vitro Oxidative Stress Model of the Human Inner Ear Using Human-Induced Pluripotent Stem Cell-Derived Otic Progenitor Cells
The inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction,yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore,we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs). OPCs,hiPSCs,and HeLa cells were exposed to hydrogen peroxide or ototoxic drugs (gentamicin and cisplatin) that induce oxidative stress to evaluate subsequent cell viability,cell death,reactive oxygen species (ROS) production,mitochondrial activity,and apoptosis (caspase 3/7 activity). Dose-dependent reductions in OPC cell viability were observed post-exposure,demonstrating their vulnerability to oxidative stress. Notably,gentamicin exposure induced ROS production and cell death in OPCs,but not hiPSCs or HeLa cells. This OPC-based human model effectively simulates oxidative stress conditions in the human inner ear and may be useful for modeling the impact of ototoxicity during early pregnancy or evaluating therapies to prevent cytotoxicity.
View Publication
产品类型:
产品号#:
100-0483
100-0484
85850
85857
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™1
mTeSR™1
(May 2024)
Nature Genetics 56 6
Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells
Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression,but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28,CTLA4 and ICOS,encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells,both conventional and regulatory subsets,uncovered gene-,cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets,this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex,multi-gene locus critical to immune homeostasis. Functional characterization of the regulatory landscape of the adjacent costimulatory genes CD28,CTLA4 and ICOS in primary human T cell subsets identifies context-dependent programs controlling this locus critical for immune homeostasis.
View Publication
产品类型:
产品号#:
100-0785
10970
10990
18000
20144
产品名:
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
EasySep™磁极
EasySep™缓冲液
(Jul 2025)
Scientific Reports 15
Natural killer cells from endurance-trained older adults show improved functional and metabolic responses to adrenergic blockade and mTOR inhibition
Aging is associated with immune dysfunction,but long-term endurance training may confer protective effects on immune cell function. This study investigates how natural killer (NK) cell phenotypes,functional markers,and metabolism differ between endurance-trained and untrained older adults. Ex vivo expanded NK cells from endurance-trained (63.6 ± 2.1 years) and untrained (64.3 ± 3.3 years) males were exposed to adrenergic blockade (propranolol; 0–200 ng/mL) or mTOR inhibition (rapamycin; 10–100 ng/mL),both with or without PMA-induced inflammatory stimulation. Flow cytometry assessed NK subsets,activation (CD38,CD57,CD107a,NKG2D),senescence (KLRG1),and inhibitory markers (PD-1,LAG-3,TIM-3,NKG2A). Seahorse analysis measured metabolic parameters. Trained participants displayed healthier immune profiles (lower NLR,SII) and higher effector NK cells with lower cytotoxic subsets. Propranolol at 100 ng/mL blunted PMA-driven increases in CD57,CD107a,and NKG2D,while potentiating regulatory markers KLRG1,LAG-3,and PD-1 in the trained group,indicating stronger immunoregulation. With rapamycin,trained NK cells preserved NKG2D and CD107a at 10 ng/mL,maintaining cytotoxicity and degranulation. In contrast,at 100 ng/mL rapamycin plus PMA,trained NK cells shifted toward an effector phenotype with higher CD57 and CD107a,yet a blunted PMA-increased LAG-3 and TIM-3,suggesting resistance to exhaustion. PD-1 and KLRG1 remained elevated,reflecting balanced immune control. Mitochondrial analysis revealed that trained NK cells exhibited higher basal and maximal OCR,greater spare respiratory capacity,and OCR/ECAR ratio,reflecting superior metabolic fitness. These findings indicate that endurance-trained older adults have NK cells with greater functional adaptability,reduced senescence,and enhanced metabolism under inflammatory and pharmacological stress.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-06057-y.
View Publication
产品类型:
产品号#:
100-0711
100-0712
100-0714
100-0715
19665
产品名:
ImmunoCult™ 人NK扩增组套
ImmunoCult™ 人NK细胞基础培养基
ImmunoCult™ 人NK细胞扩增包被材料
ImmunoCult™ 人NK细胞扩增添加物
EasySep™ Direct人NK细胞分选试剂盒
M. Tambe et al. (Oct 2024)
Cell Death & Disease 15 10
Venetoclax triggers sublethal apoptotic signaling in venetoclax-resistant acute myeloid leukemia cells and induces vulnerability to PARP inhibition and azacitidine
Venetoclax plus azacitidine treatment is clinically beneficial for elderly and unfit acute myeloid leukemia (AML) patients. However,the treatment is rarely curative,and relapse due to resistant disease eventually emerges. Since no current clinically feasible treatments are known to be effective at the state of acquired venetoclax resistance,this is becoming a major challenge in AML treatment. Studying venetoclax-resistant AML cell lines,we observed that venetoclax induced sublethal apoptotic signaling and DNA damage even though cell survival and growth were unaffected. This effect could be due to venetoclax inducing a sublethal degree of mitochondrial outer membrane permeabilization. Based on these results,we hypothesized that the sublethal apoptotic signaling induced by venetoclax could constitute a vulnerability in venetoclax-resistant AML cells. This was supported by screens with a broad collection of drugs,where we observed a synergistic effect between venetoclax and PARP inhibition in venetoclax-resistant cells. Additionally,the venetoclax-PARP inhibitor combination prevented the acquisition of venetoclax resistance in treatment naïve AML cell lines. Furthermore,the addition of azacitidine to the venetoclax-PARP inhibitor combination enhanced venetoclax induced DNA damage and exhibited exceptional sensitivity and long-term responses in the venetoclax-resistant AML cell lines and samples from AML patients that had clinically relapsed under venetoclax-azacitidine therapy. In conclusion,we mechanistically identify a new vulnerability in acquired venetoclax-resistant AML cells and identify PARP inhibition as a potential therapeutic approach to overcome acquired venetoclax resistance in AML. Subject terms: Acute myeloid leukaemia,Acute myeloid leukaemia
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
T. Nosaka et al. (Aug 2025)
Cancers 17 17
Clinical Significance of CD90(+) Circulating Tumor Cells as Dynamic Biomarkers in Unresectable Hepatocellular Carcinoma Treated with Atezolizumab/Bevacizumab and Lenvatinib
Atezolizumab plus bevacizumab and lenvatinib are standard treatments for unresectable hepatocellular carcinoma; however,tumor markers such as alpha-fetoprotein and des-gamma-carboxy prothrombin have a limited ability to reflect treatment responses. Circulating tumor cells are non-invasive biomarkers associated with cancer stemness and treatment resistance. We assessed circulating tumor cell subsets expressing cancer stem cell markers (CD90,epithelial cell adhesion molecule,CD133,vimentin) using multiparametric flow cytometry at early and maximal response phases in patients receiving atezolizumab plus bevacizumab or lenvatinib. Early decreases in CD90-positive circulating tumor cells after therapy initiation were associated with tumor shrinkage and longer progression-free survival in both groups,as well as prolonged overall survival in the atezolizumab plus bevacizumab group. At maximal response,changes in CD90-positive circulating tumor cells reflected tumor burden more accurately than alpha-fetoprotein or des-gamma-carboxy prothrombin. These findings highlight the potential of CD90-positive circulating tumor cells to become dynamic biomarkers in systemic therapy for unresectable hepatocellular carcinoma.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
Z. Chen et al. (Oct 2025)
Cell Death Discovery 11
Induced pluripotent stem cells carrying novel APTX mutations presented defective neural differentiation with the accumulation of DNA single-strand breaks
Ataxia with oculomotor apraxia type 1 (AOA1) is a rare,autosomal recessive,early-onset,progressive cerebellar ataxia caused by mutations in the APTX gene,which encodes aprataxin,a DNA-adenylate hydrolase involved in DNA damage repair. The pathogenesis of AOA1 remains unclear. The purpose of this study was to investigate the pathogenesis of a novel mutation,p.H201P/H201R,carried by our AOA1 patient and the mechanism of AOA1 in an induced pluripotent stem cells (iPSCs) model. We edited iPSCs derived from a healthy individual to carry the APTX homozygous mutation p.H201P (H201P-iPSCs) or p.H201R (H201R-iPSCs) via CRISPR/Cas9. We found that aprataxin expression was absent in both H201P- and H201R-iPSCs. The capacity of these APTX-mutant iPSCs to differentiate into neural progenitor cells (NPCs) and mature neurons was diminished. We observed an increase in DNA single-strand breaks (SSB) via a comet assay and poly(ADP-ribose) staining,and an increase in the ratio of cleaved PARP-1/total PARP-1 in APTX-mutant NPCs and early immature neurons (EiNs),in addition of a heightened sensitivity to tert-butyl hydroperoxide in APTX-mutant EiNs. Moreover,a decrease of APE1 expression was observed in APTX-mutant NPCs and H201R-EiNs during neural differentiation. Our study established a practical iPSCs model to investigate AOA1 disease. We found that mutant aprataxin leads to defective neural differentiation,accompanied by the accumulation of DNA SSBs with increased cleaved PARP-1 and reduced APE1 expression of the base excision repair pathway.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
Turan S et al. (APR 2016)
Molecular Therapy 24 October 2015 1--12
Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes,respectively. Using patient-derived induced pluripotent stem cells (iPSC),we corrected the dysferlin nonsense mutation c.5713CtextgreaterT; p.R1905X and the most common alpha-sarcoglycan mutation,missense c.229CtextgreaterT; p.R77C,by single-stranded oligonucleotide-mediated gene editing,using the CRISPR/Cas9 gene editing system to enhance the frequency of homology-directed repair. We demonstrated seamless,allele-specific correction at efficiencies of 0.7-1.5%. As an alternative,we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22,using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination,and DICE also utilized site-specific recombinases. With DICE and THRIP,we obtained targeting efficiencies after selection of ˜20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization,as shown by immunoblot and immunocytochemistry. In summary,we demonstrate for the first time precise correction of LGMD iPSC and validation of expression,opening the possibility of cell therapy utilizing these corrected iPSC.Molecular Therapy (2016); doi:10.1038/mt.2016.40.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Hasehira K et al. (JUN 2016)
Glycoconjugate Journal 1--10
Structural and quantitative evidence of ??2???6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells
Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such,they hold promise for use in stem cell-based therapies. However,no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously,we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that $$2-6-sialylation is a marker of the differentiation potential of these cells. Nevertheless,no information was available about the structural details of these of $$2-6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs),human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of $$2-6-sialylated N-glycans was detected in early passage cells (24-28 % of sialylated N-glycans) compared with late passage cells (13-15 %). A major $$2-6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes,Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast,no significant differences were observed between early and late passage hMSCs with respect to $$2-6-sialylated O-glycan percentages. These results demonstrate that levels of $$2-6-sialylated N-glycans,but not O-glycans,could be used as markers of the differential potential of hMSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Papait A et al. (NOV 2016)
Journal of tissue engineering and regenerative medicine
Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment putatively fostering the wound healing.
Autologous platelet rich plasma (PRP) is clinically used to induce repair of different tissues through the release of bioactive molecules. In some patients,the production of an efficient autologous PRP is unfeasible due to their compromised health. We developed an allogeneic PRP mismatched for AB0 and Rh antigens. To broadcast its clinical applications avoiding side effects the outcome of allogeneic PRP on immune response should be defined. Thus,we investigated whether PRP affected the differentiation of peripheral blood monocytes to dendritic cells upon stimulation with granulocyte monocyte colony stimulating factor and interleukin-4. Indeed,these cells are the main players of immune response and tissue repair. PRP inhibited the differentiation of monocytes to CD1a(+) dendritic cells and favored the expansion of phagocytic CD163(+) CD206(+) fibrocyte-like cells. These cells produced inteleukin-10 and prostaglandin-E2,but not interferon-γ,upon stimulation with lipopolysaccharides. Moreover,they promoted the expansion of regulatory CD4(+) CD25(+) FoxP3(+) T cells upon allostimulation or antigen specific priming. Finally,the conditioned medium harvested from monocytes differentiated with PRP triggered a strong chemotactic effect on mesenchymal cells in both scratch and transwell migration assays. These results strongly suggest that allogeneic PRP can foster the differentiation of monocytes to a regulatory anti-inflammatory population possibly favoring wound healing.
View Publication
产品类型:
产品号#:
15022
15062
19155
19155RF
15028
15068
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
Zheng X et al. (MAY 2004)
Blood 103 9 3535--43
Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells.
Acute myeloid leukemia (AML) is characterized by the block of differentiation,deregulated apoptosis,and an increased self-renewal of hematopoietic precursors. It is unclear whether the self-renewal of leukemic blasts results from the cumulative effects of blocked differentiation and impaired apoptosis or whether there are mechanisms directly increasing self-renewal. The AML-associated translocation products (AATPs) promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha),promyelocytic leukemia zinc finger (PLZF)/RAR alpha (X-RAR alpha),and AML-1/ETO block hematopoietic differentiation. The AATPs activate the Wnt signaling by up-regulating gamma-catenin. Activation of the Wnt signaling augments self-renewal of hematopoietic stem cells (HSCs). Therefore,we investigated how AATPs influence self-renewal of HSCs and evaluated the role of gamma-catenin in the determination of the phenotype of HSCs expressing AATPs. Here we show that the AATPs directly activate the gamma-catenin promoter. The crucial role of gamma-catenin in increasing the self-renewal of HSCs upon expression of AATPs is demonstrated by (i) the abrogation of replating efficiency upon hindrance of gamma-catenin expression through RNA interference,and (ii) the augmentation of replating efficiency of HSCs upon overexpression of gamma-catenin itself. In addition,the inoculation of gamma-catenin-transduced HSCs into irradiated recipient mice establishes the clinical picture of AML. These data provide the first evidence that the aberrant activation of Wnt signaling by the AATP decisively contributes to the pathogenesis of AML.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Kimura T et al. (JUN 2004)
Blood 103 12 4478--86
The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells.
The novel immunosuppressant FTY720 activates sphingosine 1-phosphate receptors (S1PRs) that affect responsiveness of lymphocytes to chemokines such as stromal cell-derived factor 1 (SDF-1),resulting in increased lymphocyte homing to secondary lymphoid organs. Since SDF-1 and its receptor CXCR4 are also involved in bone marrow (BM) homing of hematopoietic stem and progenitor cells (HPCs),we analyzed expression of S1PRs and the influence of FTY720 on SDF-1/CXCR4-mediated effects in human HPCs. By reverse transcriptase-polymerase chain reaction (RT-PCR),S1PRs were expressed in mobilized CD34+ HPCs,particularly in primitive CD34+/CD38- cells. Incubation of HPCs with FTY720 resulted in prolonged SDF-1-induced calcium mobilization and actin polymerization,and substantially increased SDF-1-dependent in vitro transendothelial migration,without affecting VLA-4,VLA-5,and CXCR4 expression. In nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice,the number of CD34+/CD38- cells that homed to the BM after 18 hours was significantly raised by pretreatment of animals and cells with FTY720,tending to result in improved engraftment. In addition,in vitro growth of HPCs (week-5 cobblestone area-forming cells [CAFCs]) was 2.4-fold increased. We conclude that activation of S1PRs by FTY720 increases CXCR4 function in HPCs both in vitro and in vivo,supporting homing and proliferation of HPCs. In the hematopoietic microenvironment,S1PRs are involved in migration and maintenance of HPCs by modulating the effects of SDF-1.
View Publication