Kö et al. (JUL 2004)
The Journal of experimental medicine 200 2 123--35
A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.
Here a new,intrinsically pluripotent,CD45-negative population from human cord blood,termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10(15) cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts,chondroblasts,adipocytes,and hematopoietic and neural cells including astrocytes and neurons that express neurofilament,sodium channel protein,and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model,the preimmune fetal sheep,resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals.
View Publication
产品类型:
产品号#:
05150
05350
72762
72764
产品名:
MyeloCult™H5100
IBMX
IBMX
Newby BN et al. ( 2017)
Diabetes 66 12 3061--3071
Type 1 Interferons Potentiate Human CD8+ T-Cell Cytotoxicity Through a STAT4- and Granzyme B-Dependent Pathway.
Events defining the progression to human type 1 diabetes (T1D) have remained elusive owing to the complex interaction between genetics,the immune system,and the environment. Type 1 interferons (T1-IFN) are known to be a constituent of the autoinflammatory milieu within the pancreas of patients with T1D. However,the capacity of IFNα/β to modulate human activated autoreactive CD8+ T-cell (cytotoxic T lymphocyte) responses within the islets of patients with T1D has not been investigated. Here,we engineer human β-cell-specific cytotoxic T lymphocytes and demonstrate that T1-IFN augments cytotoxicity by inducing rapid phosphorylation of STAT4,resulting in direct binding at the granzyme B promoter within 2 h of exposure. The current findings provide novel insights concerning the regulation of effector function by T1-IFN in human antigen-experienced CD8+ T cells and provide a mechanism by which the presence of T1-IFN potentiates diabetogenicity within the autoimmune islet.
View Publication
Zhou J et al. (AUG 2016)
Neurochemical Research 41 8 2065--2074
Generation of Human Embryonic Stem Cell Line Expressing zsGreen in Cholinergic Neurons Using CRISPR/Cas9 System
Lineage specific human embryonic stem cell (hESC) reporter cell line is a versatile tool for biological studies on real time monitoring of differentiation,physiological and biochemical features of special cell types and pathological mechanism of disease. Here we report the generation of ChAT-zsGreen reporter hESC line that express zsGreen under the control of the choline acetyltransferase (ChAT) promoter using CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 system. We show that the ChAT-zsGreen hESC reporter cell lines retain the features of undifferentiated hESC. After cholinergic neuronal differentiation,cholinergic neurons were clearly labeled with green fluorescence protein (zsGreen). The ChAT-zsGreen reporter hESC lines are invaluable not only for the monitoring cholinergic neuronal differentiation but also for study physiological and biochemical hallmarks of cholinergic neurons.
View Publication
产品类型:
产品号#:
05940
产品名:
E. Gabriel et al. (JAN 2016)
Stem cell reports 7 4 678--692
Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs.
Mitochondria are critical to neurogenesis,but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons,mitochondria in these neurons exhibit pronounced changes during differentiation,including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis,which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases.
View Publication
产品类型:
产品号#:
05832
05835
05839
08581
08582
05833
05790
05792
05794
05795
05793
产品名:
STEMdiff™ 神经花环选择试剂
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
STEMdiff™神经前体细胞培养基
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
(Aug 2024)
ACS Omega 9 34
LSD Modulates Proteins Involved in Cell Proteostasis, Energy Metabolism and Neuroplasticity in Human Cerebral Organoids
Proteomic analysis of human cerebral organoids may reveal how psychedelics regulate biological processes,shedding light on drug-induced changes in the brain. This study elucidates the proteomic alterations induced by lysergic acid diethylamide (LSD) in human cerebral organoids. By employing high-resolution mass spectrometry-based proteomics,we quantitatively analyzed the differential abundance of proteins in cerebral organoids exposed to LSD. Our findings indicate changes in proteostasis,energy metabolism,and neuroplasticity-related pathways. Specifically,LSD exposure led to alterations in protein synthesis,folding,autophagy,and proteasomal degradation,suggesting a complex interplay in the regulation of neural cell function. Additionally,we observed modulation in glycolysis and oxidative phosphorylation,crucial for cellular energy management and synaptic function. In support of the proteomic data,complementary experiments demonstrated LSD’s potential to enhance neurite outgrowth in vitro,confirming its impact on neuroplasticity. Collectively,our results provide a comprehensive insight into the molecular mechanisms through which LSD may affect neuroplasticity and potentially contribute to therapeutic effects for neuropsychiatric disorders.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Jul 2024)
Stem Cell Research & Therapy 15 15
Effect and mechanism of T lymphocytes on human induced pluripotent stem cell-derived cardiomyocytes via Proteomics
BackgroundAbnormalities in T cell activation play an important role in the pathogenesis of myocarditis,and persistent T cell responses can lead to autoimmunity and chronic cardiac inflammation,as well as even dilated cardiomyopathy. Although previous work has examined the role of T cells in myocarditis in animal models,the specific mechanism for human cardiomyocytes has not been investigated.MethodsIn this study,we constructed the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and established the T cell-mediated cardiac injury model by co-culturing with activated CD4 + T or CD8 + T cells that were isolated from peripheral mononuclear blood to elucidate the pathogenesis of myocardial cell injury caused by inflammation.ResultsBy combination of quantitative proteomics with tissue and cell immunofluorescence examination,we established a proteome profile of inflammatory myocardia from hiPSC-CMs with obvious cardiomyocyte injury and increased levels of lactate dehydrogenase content,creatine kinase isoenzyme MB and cardiac troponin. A series of molecular dysfunctions of hiPSC-CMs was observed and indicated that CD4 + cells could produce direct cardiomyocyte injury by activating the NOD-like receptor signals pathway.ConclusionsThe data presented in our study established a proteome map of inflammatory myocardial based on hiPSC-CMs injury model. These results can provide guidance in the discovery of improved clinical treatments for myocarditis.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03791-4.
View Publication
产品类型:
产品号#:
05990
产品名:
TeSR™-E8™
(Apr 2024)
PNAS Nexus 3 5
Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids
AbstractDespite the success of combination antiretroviral therapy (ART) for individuals living with HIV,mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation,neuronal dysfunction,and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia,we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1,ISG15,ISG20,IFI27,IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART,consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However,S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells,mature and immature ChP cells,neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons,accompanied by increased expression of genes promoting cellular senescence and cell death. Together,these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.
View Publication
产品类型:
产品号#:
08570
100-0483
100-0484
100-0276
100-1130
产品名:
STEMdiff™ 脑类器官试剂盒
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
G. R. Kelkar et al. (Aug 2025)
Frontiers in Cell and Developmental Biology 13 1
A human Angelman Syndrome class II pluripotent stem cell line with fluorescent paternal UBE3A reporter
IntroductionAngelman Syndrome (AS) is characterized in large part by the loss of functional UBE3A protein in mature neurons. A majority of AS etiologies is linked to deletion of the maternal copy of the UBE3A gene and epigenetic silencing of the paternal copy. A common therapeutic strategy is to unsilence the intact paternal copy thereby restoring UBE3A levels. Identifying novel therapies has been aided by a UBE3A-YFP reporter mouse model. This study presents an analogous fluorescent UBE3A reporter system in human cells.MethodsPreviously derived induced Pluripotent Stem Cells (iPSCs) with a Class II large deletion at the UBE3A locus are used in this study. mGL and eGFP are integrated downstream of the endogenous UBE3A using CRISPR/Cas9. These reporter iPSCs are differentiated into 2D and 3D neural cultures to monitor long-term neuronal maturation. Green fluorescence dynamics are analyzed by immunostaining and flow cytometry.ResultsThe reporter is successfully integrated into the genome and reports paternal UBE3A expression. Fluorescence expression gradually reduces with UBE3A silencing in neurons as they mature. Expression patterns also reflect expected responses to molecules known to reactivate paternal UBE3A.DiscussionThis human-cell-based model can be used to screen novel therapeutic candidates,facilitate tracking of UBE3A expression in time and space,and study human-specific responses. However,its ability to restore UBE3A function cannot be studied using this model. Further research in human cells is needed to engineer systems with functional UBE3A to fully capture the therapeutic capabilities of novel candidates.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
M. Prondzynski et al. (Jul 2024)
Nature Communications 15
Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems
Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality,inter-batch consistency,cryopreservation and scale remain,reducing experimental reproducibility and clinical translation. Here,we report a robust stirred suspension cardiac differentiation protocol,and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines,the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs,bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks,which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible,scalable,and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications,and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols. Subject terms: Cardiovascular biology,Induced pluripotent stem cells,Cardiovascular models
View Publication
产品类型:
产品号#:
05030
05854
05855
产品名:
STEMdiff™心肌细胞冷冻培养基
mFreSR™
mFreSR™
E. Schruf et al. (jun 2020)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 34 6 7825--7846
Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in a human iPSC-derived air-liquid interface model.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown cause that is characterized by progressive fibrotic lung remodeling. An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung,herein termed bronchiolization,is often observed in IPF. However,the origin of this dysfunctional distal lung epithelium remains unknown due to a lack of suitable human model systems. In this study,we established a human induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar epithelial type II (ATII)-like cell differentiation that allows us to investigate alveolar epithelial progenitor cell differentiation in vitro. We treated this system with an IPF-relevant cocktail (IPF-RC) to mimic the pro-fibrotic cytokine milieu present in IPF lungs. Stimulation with IPF-RC during differentiation increases secretion of IPF biomarkers and RNA sequencing (RNA-seq) of these cultures reveals significant overlap with human IPF patient data. IPF-RC treatment further impairs ATII differentiation by driving a shift toward an airway epithelial-like expression signature,providing evidence that a pro-fibrotic cytokine environment can influence the proximo-distal differentiation pattern of human lung epithelial cells. In conclusion,we show for the first time,the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization of the lung epithelium in vitro.
View Publication
产品类型:
产品号#:
05040
产品名:
PneumaCult™-Ex Plus 培养基
Kucia M et al. (JAN 2006)
Leukemia 20 1 18--28
Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke.
The concept that bone marrow (BM)-derived cells participate in neural regeneration remains highly controversial and the identity of the specific cell type(s) involved remains unknown. We recently reported that the BM contains a highly mobile population of CXCR4+ cells that express mRNA for various markers of early tissue-committed stem cells (TCSCs),including neural TCSCs. Here,we report that these cells not only express neural lineage markers (beta-III-tubulin,Nestin,NeuN,and GFAP),but more importantly form neurospheres in vitro. These neural TCSCs are present in significant amounts in BM harvested from young mice but their abundance and responsiveness to gradients of motomorphogens,such as SDF-1,HGF,and LIF,decreases with age. FACS analysis,combined with analysis of neural markers at the mRNA and protein levels,revealed that these cells reside in the nonhematopoietic CXCR4+/Sca-1+/lin-/CD45 BM mononuclear cell fraction. Neural TCSCs are mobilized into the peripheral-blood following stroke and chemoattracted to the damaged neural tissue in an SDF-1-CXCR4-,HGF-c-Met-,and LIF-LIF-R-dependent manner. Based on these data,we hypothesize that the postnatal BM harbors a nonhematopoietic population of cells that express markers of neural TCSCs that may account for the beneficial effects of BM-derived cells in neural regeneration.
View Publication