Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits.
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach,however,is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here,we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT."
View Publication
产品类型:
产品号#:
15022
15062
15023
15063
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™ 人CD8+ T细胞富集抗体混合物
RosetteSep™人CD8+ T细胞富集抗体混合物
Sadek H et al. ( 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 16 6063--6068
Cardiogenic small molecules that enhance myocardial repair by stem cells.
The clinical success of stem cell therapy for myocardial repair hinges on a better understanding of cardiac fate mechanisms. We have identified small molecules involved in cardiac fate by screening a chemical library for activators of the signature gene Nkx2.5,using a luciferase knockin bacterial artificial chromosome (BAC) in mouse P19CL6 pluripotent stem cells. We describe a family of sulfonyl-hydrazone (Shz) small molecules that can trigger cardiac mRNA and protein expression in a variety of embryonic and adult stem/progenitor cells,including human mobilized peripheral blood mononuclear cells (M-PBMCs). Small-molecule-enhanced M-PBMCs engrafted into the rat heart in proximity to an experimental injury improved cardiac function better than control cells. Recovery of cardiac function correlated with persistence of viable human cells,expressing human-specific cardiac mRNAs and proteins. Shz small molecules are promising starting points for drugs to promote myocardial repair/regeneration by activating cardiac differentiation in M-PBMCs.
View Publication
产品类型:
产品号#:
73422
产品名:
K. E. Neu et al. (NOV 2018)
The Journal of clinical investigation
Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination.
Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however,our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this,we developed the Spec-seq framework,which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here,we present the first application of the Spec-seq framework,which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However,we did find enhanced transcriptional similarity between clonally related B cells,as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine-positive plasmablasts are largely similar,whereas IgA vaccine-negative cells appear to be transcriptionally distinct from conventional,terminally differentiated,antigen-induced peripheral blood plasmablasts.
View Publication
产品类型:
产品号#:
15024
15064
产品名:
RosetteSep™ 人B细胞富集抗体混合物
RosetteSep™人B细胞富集抗体混合物
J. E. Oh et al. (jul 2019)
Nature 571 7763 122--126
Migrant memory B cells secrete luminal antibody in the vagina.
Antibodies secreted into mucosal barriers serve to protect the host from a variety of pathogens,and are the basis for successful vaccines1. In type I mucosa (such as the intestinal tract),dimeric IgA secreted by local plasma cells is transported through polymeric immunoglobulin receptors2 and mediates robust protection against viruses3,4. However,owing to the paucity of polymeric immunoglobulin receptors and plasma cells,how and whether antibodies are delivered to the type II mucosa represented by the lumen of the lower female reproductive tract remains unclear. Here,using genital herpes infection in mice,we show that primary infection does not establish plasma cells in the lamina propria of the female reproductive tract. Instead,upon secondary challenge with herpes simplex virus 2,circulating memory B cells that enter the female reproductive tract serve as the source of rapid and robust antibody secretion into the lumen of this tract. CD4 tissue-resident memory T cells secrete interferon-gamma,which induces expression of chemokines,including CXCL9 and CXCL10. Circulating memory B cells are recruited to the vaginal mucosa in a CXCR3-dependent manner,and secrete virus-specific IgG2b,IgG2c and IgA into the lumen. These results reveal that circulating memory B cells act as a rapidly inducible source of mucosal antibodies in the female reproductive tract.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
(Feb 2025)
World Journal of Stem Cells 17 2
Nicotinamide adenine dinucleotide rejuvenates septic bone marrow mesenchymal stem cells
BACKGROUNDSepsis is a severe illness characterized by systemic and multiorgan reactive responses and damage. However,the impact of sepsis on the bone marrow,particularly on bone marrow mesenchymal stem cells (BMSCs),is less reported. BMSCs are critical stromal cells in the bone marrow microenvironment that maintain bone stability and hematopoietic homeostasis; however,the impairment caused by sepsis remains unknown.AIMTo investigate the effects of sepsis on BMSCs and the underlying mechanisms.METHODSBMSCs were obtained from healthy donors and patients with sepsis. We compared the self-renewal capacity,differentiation potential,and hematopoietic supportive ability in vitro. Senescence of septic BMSCs was assessed using β-galactosidase staining,senescence-associated secretory phenotype,intracellular reactive oxygen species levels,and the expression of P16 and P21. Finally,the changes in septic BMSCs after nicotinamide adenine dinucleotide (NAD) treatment were evaluated.RESULTSSeptic BMSCs showed decreased proliferation and self-renewal,bias towards adipogenic differentiation,and weakened osteogenic differentiation. Additionally,hematopoietic supportive capacity declines in sepsis. The levels of aging markers were significantly higher in the septic BMSCs. After NAD treatment,the proliferation capacity of septic BMSCs showed a recovery trend,with increased osteogenic and hematopoietic supportive capacities. Sepsis resulted in decreased expression of sirtuin 3 (SIRT3) in BMSCs,whereas NAD treatment restored SIRT3 expression,enhanced superoxide dismutase enzyme activity,reduced intracellular reactive oxygen species levels,maintained mitochondrial stability and function,and ultimately rejuvenated septic BMSCs.CONCLUSIONSepsis accelerates the aging of BMSCs,as evidenced by a decline in self-renewal and osteogenic capabilities,as well as weakened hematopoietic support functions. These deficiencies can be effectively reversed via the NAD/SIRT3/superoxide dismutase pathway.
View Publication
产品类型:
产品号#:
09600
09650
17856
17856RF
100-1569
18000
20144
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
EasySep™磁极
EasySep™缓冲液
K. A. Davis et al. (jun 2020)
Journal of biomedical materials research. Part A
Increased yield of gelatin coated therapeutic cells through cholesterol insertion.
Gelatin coatings are effective in increasing the retention of MSCs injected into the heart and minimizing the damage from acute myocardial infarction (AMI),but early studies suffered from low fractions of the MSCs coated with gelatin. Biotinylation of the MSC surface is a critical first step in the gelatin coating process,and in this study,we evaluated the use of biotinylated cholesterol lipid insertion" anchors as a substitute for the covalent NHS-biotin anchors to the cell surface. Streptavidin-eosin molecules where eosin is our photoinitiator can then be bound to the cell surface through biotin-streptavidin affinity. The use of cholesterol anchors increased streptavidin density on the surface of MSCs further driving polymerization and allowing for an increased fraction of MSCs coated with gelatin (83{\%}) when compared to NHS-biotin (52{\%}). Additionally the cholesterol anchors increased the uniformity of the coating on the MSC surface and supported greater numbers of coated MSCs even when the streptavidin density was slightly lower than that of an NHS-biotin anchoring strategy. Critically this improvement in gelatin coating efficiency did not impact cytokine secretion and other critical MSC functions. Proper selection of the cholesterol anchor and the biotinylation conditions supports cellular function and densities of streptavidin on the MSC surface of up to {\~{}}105 streptavidin molecules/$\mu$m2 . In all these cholesterol anchors offer an effective path towards the formation of conformal coatings on the majority of MSCs to improve the retention of MSCs in the heart following AMI."
View Publication
产品类型:
产品号#:
05513
产品名:
MesenCult™ 扩增试剂盒 (小鼠)
M. Gentzsch et al. ( 2017)
American Journal of Respiratory Cell and Molecular Biology 56 5 568--574
Pharmacological rescue of conditionally reprogrammed cystic fibrosis bronchial epithelial cells
Well-differentiated primary human bronchial epithelial (HBE) cell cultures are vital for cystic fibrosis (CF) research,particularly for the development of cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs. Culturing of epithelial cells with irradiated 3T3 fibroblast feeder cells plus the RhoA kinase inhibitor Y-27632 (Y),termed conditionally reprogrammed cell (CRC) technology,enhances cell growth and lifespan while preserving cell-of-origin functionality. We initially determined the electrophysiological and morphological characteristics of conventional versus CRC-expanded non-CF HBE cells. On the basis of these findings,we then created six CF cell CRC populations,three from sequentially obtained CF lungs and three from F508 del homozygous donors previously obtained and cryopreserved using conventional culture methods. Growth curves were plotted,and cells were subcultured,without irradiated feeders plus Y,into air-liquid interface conditions in nonproprietary and proprietary Ultroser G-containing media and were allowed to differentiate. Ussing chamber studies were performed after treatment of F508 del homozygous CF cells with the CFTR modulator VX-809. Bronchial epithelial cells grew exponentially in feeders plus Y,dramatically surpassing the numbers of conventionally grown cells. Passage 5 and 10 CRC HBE cells formed confluent mucociliary air-liquid interface cultures. There were differences in cell morphology and current magnitude as a function of extended passage,but the effect of VX-809 in increasing CFTR function was significant in CRC-expanded F508 del HBE cells. Thus,CRC technology expands the supply of functional primary CF HBE cells for testing CFTR modulators in Ussing chambers.
View Publication
产品类型:
产品号#:
100-0352
产品名:
条件性重编程(CR)培养基
Hockemeyer D et al. (SEP 2009)
Nature biotechnology 27 9 851--7
Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases.
Realizing the full potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) requires efficient methods for genetic modification. However,techniques to generate cell type-specific lineage reporters,as well as reliable tools to disrupt,repair or overexpress genes by gene targeting,are inefficient at best and thus are not routinely used. Here we report the highly efficient targeting of three genes in human pluripotent cells using zinc-finger nuclease (ZFN)-mediated genome editing. First,using ZFNs specific for the OCT4 (POU5F1) locus,we generated OCT4-eGFP reporter cells to monitor the pluripotent state of hESCs. Second,we inserted a transgene into the AAVS1 locus to generate a robust drug-inducible overexpression system in hESCs. Finally,we targeted the PITX3 gene,demonstrating that ZFNs can be used to generate reporter cells by targeting non-expressed genes in hESCs and hiPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lippmann ES et al. (APR 2014)
Stem Cells 32 4 1032--1042
Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors.
The embryonic neuroepithelium gives rise to the entire central nervous system in vivo,making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here,we report that hPSCs maintained under chemically defined,feeder-independent,and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions,without small molecule inhibitors,and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12,sodium bicarbonate,selenium,ascorbic acid,transferrin,and insulin (i.e.,E6 medium). Furthermore,we provide evidence that the defined culture conditions enable this high level of neural conversion in contrast to hPSCs maintained on mouse embryonic fibroblasts (MEFs). In addition,hPSCs previously maintained on MEFs could be rapidly converted to a neural compliant state upon transfer to these defined conditions while still maintaining their ability to generate all three germ layers. Overall,this fully defined and scalable protocol should be broadly useful for generating therapeutic neural cells for regenerative applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Krivega M et al. (NOV 2014)
Reproduction 148 5 531--544
Car expression in human embryos and hesc illustrates its role in pluripotency and tight junctions
Coxsackie virus and adenovirus receptor,CXADR (CAR),is present during embryogenesis and is involved in tissue regeneration,cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells,from the cleavage stage up to the precursor epiblast,and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane,involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells,and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts,CAR was reduced in the membrane and concentrated in the nucleus,which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus,corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage,the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types,such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gallegos-Cá et al. (AUG 2015)
Stem cells and development 24 16 1901--1911
For diseases of the brain,the pig (Sus scrofa) is increasingly being used as a model organism that shares many anatomical and biological similarities with humans. We report that pig induced pluripotent stem cells (iPSC) can recapitulate events in early mammalian neural development. Pig iPSC line (POU5F1(high)/SSEA4(low)) had a higher potential to form neural rosettes (NR) containing neuroepithelial cells than either POU5F1(low)/SSEA4(low) or POU5F1(low)/SSEA4(high) lines. Thus,POU5F1 and SSEA4 pluripotency marker profiles in starting porcine iPSC populations can predict their propensity to form more robust NR populations in culture. The NR were isolated and expanded in vitro,retaining their NR morphology and neuroepithelial molecular properties. These cells expressed anterior central nervous system fate markers OTX2 and GBX2 through at least seven passages,and responded to retinoic acid,promoting a more posterior fate (HOXB4+,OTX2-,and GBX2-). These findings offer insight into pig iPSC development,which parallels the human iPSC in both anterior and posterior neural cell fates. These in vitro similarities in early neural differentiation processes support the use of pig iPSC and differentiated neural cells as a cell therapy in allogeneic porcine neural injury and degeneration models,providing relevant translational data for eventual human neural cell therapies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Easley CA et al. (MAY 2015)
Stem Cell Research 14 3 347--355
Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model
Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available,understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia,primary and secondary spermatocytes,and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here,using this model system,we examine the effects of 2-bromopropane (2-BP) and 1,2,dibromo-3-chloropropane (DBCP) on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability,whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS) formation leading to an oxidized cellular environment. Taken together,these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid,efficient,and unbiased format.
View Publication