Willems E et al. (AUG 2011)
Circulation research 109 4 360--4
Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm.
RATIONALE: Human embryonic stem cells can form cardiomyocytes when cultured under differentiation conditions. Although the initiating step of mesoderm formation is well characterized,the subsequent steps that promote for cardiac lineages are poorly understood and limit the yield of cardiomyocytes. OBJECTIVE: Our aim was to develop a human embryonic stem cell-based high-content screening assay to discover small molecules that drive cardiogenic differentiation after mesoderm is established to improve our understanding of the biology involved. Screening of libraries of small-molecule pathway modulators was predicted to provide insight into the cellular proteins and signaling pathways that control stem cell cardiogenesis. METHODS AND RESULTS: Approximately 550 known pathway modulators were screened in a high-content screening assay,with hits being called out by the appearance of a red fluorescent protein driven by the promoter of the cardiac-specific MYH6 gene. One potent small molecule was identified that inhibits transduction of the canonical Wnt response within the cell,which demonstrated that Wnt inhibition alone was sufficient to generate cardiomyocytes from human embryonic stem cell-derived mesoderm cells. Transcriptional profiling of inhibitor-treated compared with vehicle-treated samples further indicated that inhibition of Wnt does not induce other mesoderm lineages. Notably,several other Wnt inhibitors were very efficient in inducing cardiogenesis,including a molecule that prevents Wnts from being secreted by the cell,which confirmed that Wnt inhibition was the relevant biological activity. CONCLUSIONS: Pharmacological inhibition of Wnt signaling is sufficient to drive human mesoderm cells to form cardiomyocytes; this could yield novel tools for the benefit of pharmaceutical and clinical applications.
View Publication
产品类型:
产品号#:
72542
72544
72562
72564
产品名:
IWP-3
IWR-1-endo
IWR-1-endo
Funk WD et al. (MAR 2012)
Stem Cell Research 8 2 154--64
Evaluating the genomic and sequence integrity of human ES cell lines; comparison to normal genomes
Copy number variation (CNV) is a common chromosomal alteration that can occur during in vitro cultivation of human cells and can be accompanied by the accumulation of mutations in coding region sequences. We describe here a systematic application of current molecular technologies to provide a detailed understanding of genomic and sequence profiles of human embryonic stem cell (hESC) lines that were derived under GMP-compliant conditions. We first examined the overall chromosomal integrity using cytogenetic techniques to determine chromosome count,and to detect the presence of cytogenetically aberrant cells in the culture (mosaicism). Assays of copy number variation,using both microarray and sequence-based analyses,provide a detailed view genomic variation in these lines and shows that in early passage cultures of these lines,the size range and distribution of CNVs are entirely consistent with those seen in the genomes of normal individuals. Similarly,genome sequencing shows variation within these lines that is completely within the range seen in normal genomes. Important gene classes,such as tumor suppressors and genetic disease genes,do not display overtly disruptive mutations that could affect the overall safety of cell-based therapeutics. Complete sequence also allows the analysis of important transplantation antigens,such as ABO and HLA types. The combined application of cytogenetic and molecular technologies provides a detailed understanding of genomic and sequence profiles of GMP produced ES lines for potential use as therapeutic agents.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Li Y et al. (AUG 1998)
Molecular and cellular biology 18 8 4719--31
Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines.
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN or CD437),originally identified as a retinoic acid receptor gamma-selective retinoid,was previously shown to induce growth inhibition and apoptosis in human breast cancer cells. In this study,we investigated the role of AHPN/CD437 and its mechanism of action in human lung cancer cell lines. Our results demonstrated that AHPN/CD437 effectively inhibited lung cancer cell growth by inducing G0/G1 arrest and apoptosis,a process that is accompanied by rapid induction of c-Jun,nur77,and p21(WAF1/CIP1). In addition,we found that expression of p53 and Bcl-2 was differentially regulated by AHPN/CD437 in different lung cancer cell lines and may play a role in regulating AHPN/CD437-induced apoptotic process. On constitutive expression of the c-JunAla(63,73) protein,a dominant-negative inhibitor of c-Jun,in A549 cells,nur77 expression and apoptosis induction by AHPN/CD437 were impaired,whereas p21(WAF1/CIP1) induction and G0/G1 arrest were not affected. Furthermore,overexpression of antisense nur77 RNA in A549 and H460 lung cancer cell lines largely inhibited AHPN/CD437-induced apoptosis. Thus,expression of c-Jun and nur77 plays a critical role in AHPN/CD437-induced apoptosis. Together,our results reveal a novel pathway for retinoid-induced apoptosis and suggest that AHPN/CD437 or analogs may have a better therapeutic efficacy against lung cancer.
View Publication
Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes.
Proteasome inhibitors benefit patients with multiple myeloma and B cell-dependent autoimmune disorders but exert toxicity from inhibition of proteasomes in other cells. Toxicity should be minimized by reversible inhibition of the immunoproteasome β5i subunit while sparing the constitutive β5c subunit. Here we report β5i-selective inhibition by asparagine-ethylenediamine (AsnEDA)-based compounds and present the high-resolution cryo-EM structural analysis of the human immunoproteasome. Despite inhibiting noncompetitively,an AsnEDA inhibitor binds the active site. Hydrophobic interactions are accompanied by hydrogen bonding with β5i and β6 subunits. The inhibitors are far more cytotoxic for myeloma and lymphoma cell lines than for hepatocarcinoma or non-activated lymphocytes. They block human B-cell proliferation and promote apoptotic cell death selectively in antibody-secreting B cells,and to a lesser extent in activated human T cells. Reversible,β5i-selective inhibitors may be useful for treatment of diseases involving activated or neoplastic B cells or activated T cells.
View Publication
产品类型:
产品号#:
17951
17951RF
100-0695
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
Z. Chen et al. (nov 2019)
Gastroenterology 156 4 1127--1139.e8
Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis.
BACKGROUND AIMS microRNAs (miRNAs) are small non-coding RNAs that bind to 3'UTR regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from subjects without evidence of gastric neoplasm from patients (n=64) and TFF1-knockout mice (n=22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28,MKN45,STKM2,and AGS cells),gastric organoids,and mice with xenograft tumors. RESULTS We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues,compared with non-tumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time PCR analyses of neoplastic gastric tissues from mice (n=39) and 3 independent cohorts patients (332 patients total). We found levels of MIR135B-5p,MIR196B-5p,and MIR92A-5p to be increased in tumor tissues whereas levels of MIR143-3p,MIR204-5p,and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues,but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p,but not control cells,was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors associated with shorter survival times of patients. CONCLUSIONS In an analysis of miRNA profiles of gastric tumors from mice and human patients,we identified a conserved signature associated with early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.
View Publication
A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development.
Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells,whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues,whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability,DNA binding,and gene transcription. Moreover,NEUROG3 was highly unstable in the intestinal epithelium,explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.
View Publication
产品类型:
产品号#:
86415
86420
产品名:
SepMate™-15 (RUO), 100 units
SepMate™-15 (RUO)
(Mar 2024)
EMBO Reports 25 4
PRODH safeguards human naive pluripotency by limiting mitochondrial oxidative phosphorylation and reactive oxygen species production
Naive human embryonic stem cells (hESCs) that resemble the pre-implantation epiblasts are fueled by a combination of aerobic glycolysis and oxidative phosphorylation,but their mitochondrial regulators are poorly understood. Here we report that,proline dehydrogenase (PRODH),a mitochondria-localized proline metabolism enzyme,is dramatically upregulated in naive hESCs compared to their primed counterparts. The upregulation of PRODH is induced by a reduction in c-Myc expression that is dependent on PD0325901,a MEK inhibitor routinely present in naive hESC culture media. PRODH knockdown in naive hESCs significantly promoted mitochondrial oxidative phosphorylation (mtOXPHOS) and reactive oxygen species (ROS) production that triggered autophagy,DNA damage,and apoptosis. Remarkably,MitoQ,a mitochondria-targeted antioxidant,effectively restored the pluripotency and proliferation of PRODH-knockdown naive hESCs,indicating that PRODH maintains naive pluripotency by preventing excessive ROS production. Concomitantly,PRODH knockdown significantly slowed down the proteolytic degradation of multiple key mitochondrial electron transport chain complex proteins. Thus,we revealed a crucial role of PRODH in limiting mtOXPHOS and ROS production,and thereby safeguarding naive pluripotency of hESCs. Synopsis Downregulation of PRODH promotes oxidative phosphorylation and ROS production,which in turn impair pluripotency and proliferation of naive but not primed hESCs,revealing a crucial role of PRODH in safeguarding human naive pluripotency. PRODH is expressed in naive hESCs at a higher level compared to their primed counterparts.MEK inhibitor present in naive culture media upregulates PRODH by suppressing MYC.PRODH depletion boosts mtOXPHOS and ROS production in naive hESCs.PRODH promotes proteolytic degradation of the ETC complex components. Downregulation of PRODH promotes oxidative phosphorylation and ROS production,which in turn impair pluripotency and proliferation of naive but not primed hESCs,revealing a crucial role of PRODH in safeguarding human naive pluripotency.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
B. R. Groveman et al. (Sep 2025)
NPJ dementia 1 1
Infecting human brain organoids with FFI or sCJD preserves prion traits regardless of host genotype
Prion diseases,such as sporadic Creutzfeldt-Jakob Disease (sCJD),are neurodegenerative disorders caused by misfolding of the prion protein (PrP). The D178N mutation in the PrP gene causes Fatal Familial Insomnia (FFI). Here we show that both sCJD and FFI prions can infect human cerebral organoids with or without the D178N mutation,and that the resulting infection is dictated by the inoculating prion and not the host organoid genotype.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
F. Huang et al. (Jul 2025)
Journal of Nanobiotechnology 23
Early-life exposure to polypropylene nanoplastics induces neurodevelopmental toxicity in mice and human iPSC-derived cerebral organoids
Nanoplastics (NPs) are emerging environmental pollutants that pose growing concerns due to their potential health risks. However,the effects of inhaled NP exposure during pregnancy on fetal brain development remain poorly understood. In this study,we investigated the impact of maternal exposure to polypropylene nanoplastics (PP-NPs) on fetal brain development and neurobehavioral outcomes in a mouse model and further explored its mechanism in human cerebral organoids. Maternal exposure to PP-NPs significantly impaired neuronal differentiation and proliferation in the fetal cortex. Neurobehavioral assessments revealed significant deficits in offspring following maternal exposure,including impaired spatial memory,reduced motor coordination,and heightened anxiety-like behavior. Furthermore,human brain organoids exposed to PP-NPs exhibited reduced growth and neuronal differentiation,with significant downregulation of key neuronal markers such as TUJ1,MAP2,and PAX6. Transcriptomic analysis identified alterations in gene expression,particularly in neuroactive ligand-receptor interaction pathway. Molecular docking and fluorescence co-localization analysis further suggested CYSLTR1 and PTH1R as key molecular targets of PP-NPs. These findings provide novel insights into the toxicological effects of NPs on the developing brain and emphasize the need for preventive measures to protect fetal neurodevelopment during pregnancy. The online version contains supplementary material available at 10.1186/s12951-025-03561-1.
View Publication
产品类型:
产品号#:
08570
产品名:
STEMdiff™ 脑类器官试剂盒
D. Barozzi et al. (Jul 2025)
Cell Reports Methods 5 7
Dynamic stimulation promotes functional tissue-like organization of a 3D human lymphoid microenvironment model in vitro
This work focused on generating a three-dimensional (3D) in vitro dynamic model to study chronic lymphocytic leukemia (CLL) cell dissemination,homing,and mechanisms of therapy resistance. We used a gelatin-based,hard porous biomaterial as a support matrix to develop 3D tissue-like models of the human lymph node and bone marrow,which were matured inside bioreactors under dynamic perfusion of medium. Comparing static and dynamic cultures of these 3D constructs revealed that perfusion promoted a tissue-like internal organization of cells,characterized by the expression of specific functional markers and deposition of an intricate extracellular matrix protein network. Recirculation of CLL cells within the dynamic system led to changes in leukemic cell behavior and in the expression of key markers involved in tumor progression. These findings suggest that the model is well suited for investigating the pathophysiological mechanisms of CLL and potentially other hematological malignancies.
View Publication
产品类型:
产品号#:
05448
产品名:
MesenCult™-ACF Plus培养试剂盒
R. B. Kang et al. (Oct 2025)
Nature Communications 16
Human pancreatic α-cell heterogeneity and trajectory inference analyses reveal SMOC1 as a β-cell dedifferentiation gene
β-cell dysfunction and dedifferentiation towards an α-cell-like phenotype are hallmarks of type 2 diabetes. However,the cell subtypes involved in β-to-α-cell transition are unknown. Using single-cell and single-nucleus RNA-seq,RNA velocity,PAGA/cell trajectory inference,and gene commonality,we interrogated α-β-cell fate switching in human islets. We found five α-cell subclusters with distinct transcriptomes. PAGA analysis showed bifurcating cell trajectories in non-diabetic while unidirectional cell trajectories from β-to-α-cells in type 2 diabetes islets suggesting dedifferentiation towards α-cells. Ten genes comprised the common signature genes in trajectories towards α-cells. Among these,the α-cell gene SMOC1 was expressed in β-cells in type 2 diabetes. Enhanced SMOC1 expression in β-cells decreased insulin expression and secretion and increased β-cell dedifferentiation markers. Collectively,these studies reveal differences in α-β-cell trajectories in non-diabetes and type 2 diabetes human islets,identify signature genes for β-to-α-cell trajectories,and discover SMOC1 as an inducer of β-cell dysfunction and dedifferentiation. Subject terms: Cell signalling,Diabetes,Differentiation
View Publication