Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis.
BACKGROUND Brucellosis is a persistent health problem in many developing countries throughout the world,and the search for simple and effective treatment continues to be of great importance. METHODS AND FINDINGS A search was conducted in MEDLINE and in the Cochrane Central Register of Controlled Trials (CENTRAL). Clinical trials published from 1985 to present that assess different antimicrobial regimens in cases of documented acute uncomplicated human brucellosis were included. The primary outcomes were relapse,therapeutic failure,combined variable of relapse and therapeutic failure,and adverse effect rates. A meta-analysis with a fixed effect model was performed and odds ratio with 95% confidence intervals were calculated. A random effect model was used when significant heterogeneity between studies was verified. Comparison of combined doxycycline and rifampicin with a combination of doxycycline and streptomycin favors the latter regimen (OR = 3.17; CI95% = 2.05-4.91). There were no significant differences between combined doxycycline-streptomycin and combined doxycycline-gentamicin (OR = 1.89; CI95% = 0.81-4.39). Treatment with rifampicin and quinolones was similar to combined doxycycline-rifampicin (OR = 1.23; CI95% = 0.63-2.40). Only one study assessed triple therapy with aminoglycoside-doxycycline-rifampicin and only included patients with uncomplicated brucellosis. Thus this approach cannot be considered the therapy of choice until further studies have been performed. Combined doxycycline/co-trimoxazole or doxycycline monotherapy could represent a cost-effective alternative in certain patient groups,and further studies are needed in the future. CONCLUSIONS Although the preferred treatment in uncomplicated human brucellosis is doxycycline-aminoglycoside combination,other treatments based on oral regimens or monotherapy should not be rejected until they are better studied. Triple therapy should not be considered the current treatment of choice.
View Publication
产品类型:
产品号#:
72742
产品名:
Doxycycline (Hyclate)
Rasmussen MA et al. (SEP 2014)
Stem Cell Reports 3 3 404--413
Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage
The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently,knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led to genomic instability. Here,we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies,due to downstream suppression of p21,without affecting apoptosis and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns,displayed normal karyotypes,contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion,transient p53 suppression increases reprogramming efficiency without affecting genomic stability,rendering the method suitable for in vitro mechanistic studies with the possibility for future clinical translation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Rowland TJ et al. (AUG 2010)
Stem cells and development 19 8 1231--1240
Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin.
Human induced pluripotent stem cells (iPSCs) hold promise as a source of adult-derived,patient-specific pluripotent cells for use in cell-based regenerative therapies. However,current methods of cell culture are tedious and expensive,and the mechanisms underlying cell proliferation are not understood. In this study,we investigated expression and function of iPSC integrin extracellular matrix receptors to better understand the molecular mechanisms of cell adhesion,survival,and proliferation. We show that iPSC lines generated using Oct-3/4,Sox-2,Nanog,and Lin-28 express a repertoire of integrins similar to that of hESCs,with prominent expression of subunits alpha5,alpha6,alphav,beta1,and beta5. Integrin function was investigated in iPSCs cultured without feeder layers on Matrigel or vitronectin,in comparison to human embryonic stem cells. beta1 integrins were required for adhesion and proliferation on Matrigel,as shown by immunological blockade experiments. On vitronectin,the integrin alphavbeta5 was required for initial attachment,but inhibition of both alphavbeta5 and beta1 was required to significantly decrease iPSC proliferation. Furthermore,iPSCs cultured on vitronectin for 9 passages retained normal karyotype,pluripotency marker expression,and capacity to differentiate in vitro. These studies suggest that vitronectin,or derivatives thereof,might substitute for Matrigel in a more defined system for iPSC culture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07180
07183
07190
27147
07191
85850
85857
85870
85875
100-0763
产品名:
Vitronectin XF™
CellAdhere™ 稀释缓冲液
mTeSR™1
mTeSR™1
Vitronectin XF™
Navarro-Costa P et al. (OCT 2010)
Human reproduction (Oxford,England) 25 10 2647--54
Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm.
BACKGROUND: Successful gametogenesis requires the establishment of an appropriate epigenetic state in developing germ cells. Nevertheless,an association between abnormal spermatogenesis and epigenetic disturbances in germline-specific genes remains to be demonstrated. METHODS: In this study,the DNA methylation pattern of the promoter CpG island (CGI) of two germline regulator genes--DAZL and DAZ,was characterized by bisulphite genomic sequencing in quality-fractioned ejaculated sperm populations from normozoospermic (NZ) and oligoasthenoteratozoospermic (OAT) men. RESULTS: OAT patients display increased methylation defects in the DAZL promoter CGI when compared with NZ controls. Such differences are recorded when analyzing sperm fractions enriched either in normal or defective germ cells (Ptextless 0.001 in both cases). Significant differences in DNA methylation profiles are also observable when comparing the qualitatively distinct germ cell fractions inside the NZ and OAT groups (P= 0.003 and P= 0.007,respectively). Contrastingly,the unmethylation pattern of the DAZ promoter CGI remains correctly established in all experimental groups. CONCLUSIONS: An association between disrupted DNA methylation of a key spermatogenesis gene and abnormal human sperm is described here for the first time. These results suggest that incorrect epigenetic marks in germline genes may be correlated with male gametogenic defects.
View Publication
产品类型:
产品号#:
18259
18259RF
产品名:
St-Amour I et al. (DEC 2013)
Journal of Cerebral Blood Flow & Metabolism 33 12 1983--1992
Brain Bioavailability of Human Intravenous Immunoglobulin and its Transport through the Murine BloodBrain Barrier
Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets,the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood-brain barrier (BBB) of C57Bl/6 mice using complementary quantitative and qualitative methodologies. As determined by enzyme-linked immunosorbent assay,a small proportion of systemically injected IVIg was detected in the brain of mice (0.009±0.001% of injected dose in the cortex) whereas immunostaining revealed localization mainly within microvessels and less frequently in neurons. Pharmacokinetic analyses evidenced a low elimination rate constant (0.0053% per hour) in the cortex,consistent with accumulation within cerebral tissue. In situ cerebral perfusion experiments revealed that a fraction of IVIg crossed the BBB without causing leakage. A dose-dependent decrease of brain uptake was consistent with a saturable blood-to-brain transport mechanism. Finally,brain uptake of IVIg after a subchronic treatment was similar in the 3xTg-AD mouse model of Alzheimer disease compared with nontransgenic controls. In summary,our results provide evidence of BBB passage and bioavailability of IVIg into the brain in the absence of BBB leakage and in sufficient concentration to interact with the therapeutic targets.
View Publication
产品类型:
产品号#:
05715
产品名:
NeuroCult™成年中枢神经系统(CNS)组织酶解试剂盒(小鼠和大鼠)
M. J. Bailey et al. (NOV 2018)
Nature communications 9 1 4560
Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model.
Zika virus is a mosquito-borne flavivirus closely related to dengue virus that can cause severe disease in humans,including microcephaly in newborns and Guillain-Barr{\'{e}} syndrome in adults. Specific treatments and vaccines for Zika virus are not currently available. Here,we isolate and characterize four monoclonal antibodies (mAbs) from an infected patient that target the non-structural protein NS1. We show that while these antibodies are non-neutralizing,NS1-specific mAbs can engage Fc$\gamma$R without inducing antibody dependent enhancement (ADE) of infection in vitro. Moreover,we demonstrate that mAb AA12 has protective efficacy against lethal challenges of African and Asian lineage strains of Zika virus in Stat2-/- mice. Protection is Fc-dependent,as a mutated antibody unable to activate known Fc effector functions or complement is not protective in vivo. This study highlights the importance of the ZIKV NS1 protein as a potential vaccine antigen.
View Publication
产品类型:
产品号#:
17955
17955RF
100-0960
产品名:
EasySep™人NK细胞分选试剂盒
RoboSep™ 人NK细胞分选试剂盒
EasySep™人NK细胞分离试剂盒
M. Jim\'enez-Fern\'andez et al. (aug 2022)
Cellular and molecular life sciences : CMLS 79 8 468
CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4€?+€?T lymphocytes.
The mechanisms that control the inflammatory-immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL),inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding,we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3),but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4??+??lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels,suggesting a potential regulation of PD-1 by this receptor. Moreover,expression of PD-1,CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls,with a strong correlation between PD-1 and CD69 mRNA expression (r??=??0.655 P???0.0001). Moreover,PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseases.
View Publication
产品类型:
产品号#:
17952
17952RF
100-0696
产品名:
EasySep™人CD4+ T细胞分选试剂盒
RoboSep™ 人CD4+ T细胞分选试剂盒
EasySep™人CD4+ T细胞分离试剂盒
D. Kabelitz et al. (oct 2022)
Scientific reports 12 1 17827
Signal strength of STING activation determines cytokine plasticity and cell death in human monocytes.
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway is a cytosolic sensor of microbial and host-derived DNA and plays a key role in innate immunity. Activation of STING by cyclic dinucleotide (CDN) ligands in human monocytes induces a type I interferon response and production of pro-inflammatory cytokines associated with the induction of massive cell death. In this study we have re-evaluated the effect of signal strength of STING activation on the cytokine plasticity of human monocytes. CDN (2'3'c-GAMP) and non-CDN (diABZI,MSA-2) STING ligands in the range of EC50 concentrations (15 $\mu$M 2'3'c-GAMP,100 nM diABZI,25 $\mu$M MSA-2) induced IFN-$\beta$,IP-10,and large amounts of IL-1$\beta$ and TNF-$\alpha$,but no IL-10 or IL-19. Interestingly,LPS-induced production of IL-10 and IL-19 was abolished in the presence of diABZI or MSA-2,whereas IL-1$\beta$ and TNF-$\alpha$ were not inhibited. Surprisingly,we observed that tenfold lower (MSA-2,i.e. 2.5 $\mu$M) or 100-fold lower (diABZI,i.e. 1 nM) concentrations strongly stimulated secretion of anti-inflammatory IL-10 and IL-19,but little of IL-1$\beta$ and TNF-$\alpha$. Induction of IL-10 was associated with up-regulation of PRDM1 (Blimp-1). While cytokine secretion stimulated by the higher concentrations was accompanied by apoptosis as shown by cleavage of caspase-3 and PARP-1,the low concentrations did not trigger overt cell death yet induced cleavage of gasdermin-D. Our results reveal a previously unrecognized plasticity of human monocytes in their signal strength-dependent production of pro- versus anti-inflammatory cytokines upon STING activation.
View Publication
产品类型:
产品号#:
19359
100-0697
19359RF
产品名:
EasySep™人单核细胞分选试剂盒
EasySep™人单核细胞分选试剂盒
RoboSep™ 人单核细胞分选试剂盒
(Jul 2025)
Scientific Reports 15 suppl 3
Chronic haloperidol exposure impairs neurodevelopment via Notch1 signaling in human stem cell-derived brain organoids
Haloperidol is a typical antipsychotic used to treat schizophrenia and induces dopamine D2 receptor antagonism. Long-term use of haloperidol can reduce brain size in animals and humans; however,the underlying mechanism of this effect remains unclear. Notch1 signaling regulates the development and function of the nervous system by balancing stem cell proliferation and differentiation. Therefore,we investigated the effects of long-term exposure to haloperidol on human-derived brain organoids,which served as sophisticated in vitro models of human brain development. Long-term exposure to haloperidol reduced the size of brain organoids and decreased the ventricular zone and Notch1 signaling. When propionate,which protects against haloperidol-induced toxicity,was combined with haloperidol,it rescued both the overall size of brain organoids and Notch1 expression levels. Additionally,treatment with valproic acid,a Notch1 activator,partially restored the size of brain organoids and the thickness of the ventricular layer. Taken together,these data suggest that long-term exposure to haloperidol impairs neurodevelopment via Notch1 signaling in brain organoids. These findings contribute to our understanding of antipsychotic drug safety and provide information for new neurodevelopmental toxicity assessments.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-08855-w.
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
05990
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
TeSR™-E8™
(Apr 2025)
Scientific Reports 15
Unique N-glycosylation signatures in human iPSC derived microglia activated by A? oligomer and lipopolysaccharide
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer’s disease (AD). Cell surface glycosylation plays an important role in immune cells; however,the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here,we study comprehensively combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-? oligomer (A?O) and LPS-treated hiMG were observed. In A?O-treated cells,the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased,corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to A?O,accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike A?O-induced hiMG,LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans,aligned with downregulation of mannosidase genes (MAN1A1,MAN2A2,and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG,aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression,while sialofucosylation decreased,aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialylation and fucosylation in A?O- and LPS-induced hiMG alleviated pro-inflammatory responses. However,the GSL profile did not exhibit significant changes in response to A?O or LPS activation,at least in the 24-hour stimulation timeframe. A?O- and LPS- specific glycosylation changes could contribute to impaired microglia function,highlighting glycosylation pathways as potential therapeutic targets for AD.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-96596-1.
View Publication
产品类型:
产品号#:
34811
34815
34821
34825
34850
34860
100-0276
100-1130
85850
85857
产品名:
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 6孔板启动套装
mTeSR™ Plus
mTeSR™ Plus
mTeSR™1
mTeSR™1
(Jun 2025)
Nature Communications 16
Monkeypox virus spreads from cell-to-cell and leads to neuronal death in human neural organoids
In 2022-23,the world witnessed the largest recorded outbreak of monkeypox virus (MPXV). Neurological manifestations were reported alongside the detection of MPXV DNA and MPXV-specific antibodies in the cerebrospinal fluid of patients. Here,we analyze the susceptibility of neural tissue to MPXV using human neural organoids (hNOs) exposed to a clade IIb isolate. We report susceptibility of several cell types to the virus,including neural progenitor cells and neurons. The virus efficiently replicates in hNOs,as indicated by the exponential increase of infectious viral titers and establishment of viral factories. Our findings reveal focal enrichment of viral antigen alongside accumulation of cell-associated infectious virus,suggesting viral cell-to-cell spread. Using an mNeonGreen-expressing recombinant MPXV,we confirm cell-associated virus transmission. We furthermore show the formation of beads in infected neurites,a phenomenon associated with neurodegenerative disorders. Bead appearance precedes neurite-initiated cell death,as confirmed through live-cell imaging. Accordingly,hNO-transcriptome analysis reveals alterations in cellular homeostasis and upregulation of neurodegeneration-associated transcripts,despite scarcity of inflammatory and antiviral responses. Notably,tecovirimat treatment of MPXV-infected hNOs significantly reduces infectious virus loads. Our findings suggest that viral disruption of neuritic transport drives neuronal degeneration,potentially contributing to MPXV neuropathology and revealing targets for therapeutic intervention. The mechanisms underlying neurological complications of monkeypox virus infection remain unclear. Here,the authors investigate its neurotropic potential and show that neuritic transport of viral particles drives neuronal degeneration.
View Publication
产品类型:
产品号#:
05835
05838
05839
08570
08600
08605
100-0276
100-1130
产品名:
STEMdiff™ 神经诱导培养基
STEMdiff™神经祖细胞冻存液
STEMdiff™ 神经诱导培养基
STEMdiff™ 脑类器官试剂盒
STEMdiff™前脑神经元分化试剂盒
STEMdiff™ 前脑神经元成熟试剂盒
mTeSR™ Plus
mTeSR™ Plus
(Nov 2024)
Communications Biology 7
Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function,and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS,but no efficacious treatment has been identified to date,possibly as a consequence of poor translation from pre-clinical animal models to human. Here,we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS. Deep functional characterization of Fragile X syndrome patient and isogenic neurons using all-optical electrophysiology and machine learning identifies a validated,FMR1-dependent cellular phenotype compatible with high throughput drug screening.
View Publication