Tomov ML et al. (DEC 2016)
Scientific Reports 6 1 37637
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics,epigenomics,and bioinformatics that inform on genetic pathways directing tissue development and function. When possible,population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American,Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype,verified teratoma formation,pluripotency biomarkers,and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural,pancreatic,and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.
View Publication
产品类型:
产品号#:
05835
05839
08581
08582
产品名:
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
M. T. Dell'anno et al. ( 2018)
Nature Communications
Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option,but optimal cell type and mechanistic aspects remain poorly defined. Here,we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons,requires the matching of neural identity to the anatomical site of injury,and is accompanied by expression of specific marker proteins. Thus,human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
View Publication
产品类型:
产品号#:
05790
05792
05793
05794
05795
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
(Aug 2024)
Cell Death & Disease 15 8
Heterozygous knockout of Synaptotagmin13 phenocopies ALS features and TP53 activation in human motor neurons
Spinal motor neurons (MNs) represent a highly vulnerable cellular population,which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study,we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/? hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover,analysis of the SYT13+/? transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures,displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes,which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family,SYT13,is sufficient to trigger a series of abnormal alterations leading to MN sufferance,thus revealing novel insights into the selective vulnerability of this cell population.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Sep 2024)
EMBO Reports 25 10
An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study,we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg,HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV,thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection,we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients,we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
View Publication
产品类型:
产品号#:
05110
100-0483
100-0484
85850
85857
产品名:
STEMdiff™定型内胚层检测试剂盒
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™1
mTeSR™1
M. H. B. A. Hamid et al. (Apr 2024)
Nature Immunology 25 5
Unconventional human CD61 pairing with CD103 promotes TCR signaling and antigen-specific T cell cytotoxicity
Cancer remains one of the leading causes of mortality worldwide,leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade,CD103 + T cells have been associated with better clinical prognosis in patients with cancer. However,the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here,we show an unexpected and transient CD61 expression,which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling,improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically,the presence of CD61 + tumor-infiltrating T lymphocytes is associated with improved clinical outcomes,mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion,this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells,which potentiates a new target for immune-based cellular therapies. Subject terms: T cells,Tumour immunology,Lymphocyte activation
View Publication
Isolation of multipotent mesenchymal stem cells from umbilical cord blood.
It is well accepted that umbilical cord blood has been a source for hematopoietic stem cells. However,controversy exists as to whether cord blood can serve as a source of mesenchymal stem cells,which can differentiate into cells of different connective tissue lineages such as bone,cartilage,and fat,and little success has been reported in the literature about the isolation of such cells from cord blood. Here we report a novel method to obtain single cell-derived,clonally expanded mesenchymal stem cells that are of multilineage differentiation potential by negative immunoselection and limiting dilution. The immunophenotype of these clonally expanded cells is consistent with that reported for bone marrow mesenchymal stem cells. Under appropriate induction conditions,these cells can differentiate into bone,cartilage,and fat. Surprisingly,these cells were also able to differentiate into neuroglial- and hepatocyte-like cells under appropriate induction conditions and,thus,these cells may be more than mesenchymal stem cells as evidenced by their ability to differentiate into cell types of all 3 germ layers. In conclusion,umbilical cord blood does contain mesenchymal stem cells and should not be regarded as medical waste. It can serve as an alternative source of mesenchymal stem cells to bone marrow.
View Publication
产品类型:
产品号#:
15128
15168
产品名:
RosetteSep™人间充质干细胞富集抗体混合物
RosetteSep™人间充质干细胞富集抗体混合物
Cheng L et al. (JUN 2014)
Cell Research 24 6 665--679
Generation of neural progenitor cells by chemical cocktails and hypoxia
Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail,namely VCR (V,VPA,an inhibitor of HDACs; C,CHIR99021,an inhibitor of GSK-3 kinases and R,Repsox,an inhibitor of TGF-β pathways),under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs re- garding their proliferative and self-renewing abilities,gene expression profiles,and multipotency for different neu- roectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation,glycogen synthase kinase,and TGF-β pathways show similar efficacies for ciNPC induction. Moreover,ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemi- cal cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pieters T et al. (SEP 2012)
Stem cell reviews 8 3 768--78
Efficient and user-friendly pluripotin-based derivation of mouse embryonic stem cells.
Classic derivation of mouse embryonic stem (ES) cells from blastocysts is inefficient,strain-dependent,and requires expert skills. Over recent years,several major improvements have greatly increased the success rate for deriving mouse ES cell lines. The first improvement was the establishment of a user-friendly and reproducible medium-alternating protocol that allows isolation of ES cells from C57BL/6 transgenic mice with efficiencies of up to 75%. A recent report describes the use of this protocol in combination with leukemia inhibitory factor and pluripotin treatment,which made it possible to obtain ES cells from F1 strains with high efficiency. We report modifications of these protocols for user-friendly and reproducible derivation of mouse ES cells with efficiencies of up to 100%. Our protocol involves a long initial incubation of primary outgrowths from blastocysts with pluripotin,which results in the formation of large spherical outgrowths. These outgrowths are morphologically distinct from classical inner cell mass (ICM) outgrowths and can be easily picked and trypsinized. Pluripotin was omitted after the first trypsinization because we found that it blocks attachment of ES cells to the feeder layer and its removal facilitated formation of ES cell colonies. The newly established ES cells exhibited normal karyotypes and generated chimeras. In summary,our user-friendly modified protocol allows formation of large spherical ICM outgrowths in a robust and reliable manner. These outgrowths gave rise to ES cell lines with success rates of up to 100%.
View Publication
产品类型:
产品号#:
72812
72814
产品名:
Pluripotin
Pluripotin
Kendellen MF et al. (MAR 2014)
Oncogene 33 10 1297--1305
Canonical and non-canonical NF-$$B signaling promotes breast cancer tumor-initiating cells.
Tumor-initiating cells (TICs) are a sub-population of cells that exhibit a robust ability to self-renew and contribute to the formation of primary tumors,the relapse of previously treated tumors and the development of metastases. TICs have been identified in various tumors including those of the breast,and are particularly enriched in the basal-like and claudin-low subtypes of breast cancer. The signaling pathways that contribute to the function and maintenance of TICs are under intense study. We explored the potential involvement of the nuclear factor-$$B (NF-$$B) family of transcription factors in TICs in cell lines that are representative of basal-like and claudin-low breast cancer. NF-$$B was found to be activated in breast cancer cells that form tumorspheres efficiently. Moreover,both canonical and non-canonical NF-$$B signaling is required for these cells to self-renew in vitro and to form xenograft tumors efficiently in vivo using limiting dilutions of cells. Consistent with this fact,canonical and non-canonical NF-$$B signaling is activated in TICs isolated from breast cancer cell lines. Experimental results indicate that NF-$$B promotes the function of TICs by stimulating epithelial-to-mesenchymal transition and by upregulating the expression of the inflammatory cytokines interleukin-1$$ and interleukin-6. The results suggest the use of NF-$$B inhibitors for clinical therapy of certain breast cancers.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Elabd C et al. (OCT 2013)
The Journal of Cell Biology 203 1 73--85
DNA methyltransferase-3–dependent nonrandom template segregation in differentiating embryonic stem cells
Asymmetry of cell fate is one fundamental property of stem cells,in which one daughter cell self-renews,whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms,such as plants,fungi,and mammals,has already been shown. However,before this current work,asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs),and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing,differentiating human and mouse ESCs. Moreover,we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3),indicating a molecular mechanism that regulates this phenomenon. Furthermore,our data support the hypothesis that retention of chromatids with the old" template DNA preserves the epigenetic memory of cell fate
View Publication
Telomerase protects werner syndrome lineage-specific stem cells from premature aging.
Werner syndrome (WS) patients exhibit premature aging predominantly in mesenchyme-derived tissues,but not in neural lineages,a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here,we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging,we differentiated iPSCs to mesenchymal stem cells (MSCs) and neural stem/progenitor cells (NPCs). We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs,but not in NPCs. We postulate this aging" discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC
View Publication