Yamin R et al. (MAY 2016)
Cell Reports 15 7 1542--53
HCMV vCXCL1 Binds Several Chemokine Receptors and Preferentially Attracts Neutrophils over NK Cells by Interacting with CXCR2.
HCMV is a highly sophisticated virus that has developed various mechanisms for immune evasion and viral dissemination throughout the body (partially mediated by neutrophils). NK cells play an important role in elimination of HCMV-infected cells. Both neutrophils and NK cells utilize similar sets of chemokine receptors to traffic,to and from,various organs. However,the mechanisms by which HCMV attracts neutrophils and not NK cells are largely unknown. Here,we show a unique viral protein,vCXCL1,which targets three chemokine receptors: CXCR1 and CXCR2 expressed on neutrophils and CXCR1 and CX3CR1 expressed on NK cells. Although vCXCL1 attracted both cell types,neutrophils migrated faster and more efficiently than NK cells through the binding of CXCR2. Therefore,we propose that HCMV has developed vCXCL1 to orchestrate its rapid systemic dissemination through preferential attraction of neutrophils and uses alternative mechanisms to counteract the later attraction of NK cells.
View Publication
产品类型:
产品号#:
19055
19055RF
产品名:
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Zhu L et al. (OCT 2016)
The Journal of cell biology 215 2 187--202
The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages.
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs,we identified a mitochondrial protein,CHCHD2,whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria,resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Mü et al. (SEP 2012)
Stem Cell Reviews and Reports 8 3 720--740
Ca2+ Activated K Channels-New Tools to Induce Cardiac Commitment from Pluripotent Stem Cells in Mice and Men
Rao R et al. (APR 2012)
Molecular cancer therapeutics 11 4 973--983
Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells.
Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis,while promoting autophagy,which promotes cancer cell survival when apoptosis is compromised. Here,we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex,resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62,caused synergistic cell death of MB-231 and SUM159PT cells,and inhibited mammosphere formation in MB-231 cells,compared with treatment with each agent alone. Finally,in mouse mammary fat pad xenografts of MB-231 cells,a tumor size-dependent induction of heat shock response,ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively,our findings show that cotreatment with an autophagy inhibitor and pan-HDI,for example,chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins,exerts superior inhibitory effects on TNBC cell growth,and increases the survival of TNBC xenografts.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Stratford AL et al. (JUL 2012)
Stem cells (Dayton,Ohio) 30 7 1338--48
Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers.
Y-box binding protein-1 (YB-1) is the first reported oncogenic transcription factor to induce the tumor-initiating cell (TIC) surface marker CD44 in triple-negative breast cancer (TNBC) cells. In order for CD44 to be induced,YB-1 must be phosphorylated at S102 by p90 ribosomal S6 kinase (RSK). We therefore questioned whether RSK might be a tractable molecular target to eliminate TICs. In support of this idea,injection of MDA-MB-231 cells expressing Flag-YB-1 into mice increased tumor growth as well as enhanced CD44 expression. Despite enrichment for TICs,these cells were sensitive to RSK inhibition when treated ex vivo with BI-D1870. Targeting RSK2 with small interfering RNA (siRNA) or small molecule RSK kinase inhibitors (SL0101 and BI-D1870) blocked TNBC monolayer cell growth by ∼100%. In a diverse panel of breast tumor cell line models RSK2 siRNA predominantly targeted models of TNBC. RSK2 inhibition decreased CD44 promoter activity,CD44 mRNA,protein expression,and mammosphere formation. CD44(+) cells had higher P-RSK(S221/227),P-YB-1(S102),and mitotic activity relative to CD44(-) cells. Importantly,RSK2 inhibition specifically suppressed the growth of TICs and triggered cell death. Moreover,silencing RSK2 delayed tumor initiation in mice. In patients,RSK2 mRNA was associated with poor disease-free survival in a cohort of 244 women with breast cancer that had not received adjuvant treatment,and its expression was highest in the basal-like breast cancer subtype. Taking this further,we report that P-RSK(S221/227) is present in primary TNBCs and correlates with P-YB-1(S102) as well as CD44. In conclusion,RSK2 inhibition provides a novel therapeutic avenue for TNBC and holds the promise of eliminating TICs.
View Publication
产品类型:
产品号#:
05620
72712
72714
产品名:
MammoCult™人培养基试剂盒
BI-D1870
Lu J et al. (OCT 2012)
Integrative biology : quantitative biosciences from nano to macro 4 10 1223--36
Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells.
The integration of microscale engineering,microfluidics,and AC electrokinetics such as dielectrophoresis has generated novel microsystems that enable quantitative analysis of cellular phenotype,function,and physiology. These systems are increasingly being used to assess diverse cell types,such as stem cells,so it becomes critical to thoroughly evaluate whether the systems themselves impact cell function. For example,engineered microsystems have been utilized to investigate neural stem/progenitor cells (NSPCs),which are of interest due to their potential to treat CNS disease and injury. Analysis by dielectrophoresis (DEP) microsystems determined that unlabeled NSPCs with distinct fate potential have previously unrecognized distinguishing electrophysiological characteristics,suggesting that NSPCs could be isolated by DEP microsystems without the use of cell type specific labels. To gauge the potential impact of DEP sorting on NSPCs,we investigated whether electric field exposure of varying times affected survival,proliferation,or fate potential of NSPCs in suspension. We found short-term DEP exposure (1 min or less) had no effect on NSPC survival,proliferation,or fate potential revealed by differentiation. Moreover,NSPC proliferation (measured by DNA synthesis and cell cycle kinetics) and fate potential were not altered by any length of DEP exposure (up to 30 min). However,lengthy exposure (textgreater5 min) to frequencies near the crossover frequency (50-100 kHz) led to decreased survival of NSPCs (maximum ∼30% cell loss after 30 min). Based on experimental observations and mathematical simulations of cells in suspension,we find that frequencies near the crossover frequency generate an induced transmembrane potential that results in cell swelling and rupture. This is in contrast to the case for adherent cells since negative DEP frequencies lower than the crossover frequency generate the highest induced transmembrane potential and damage for these cells. We clarify contrasting effects of DEP on adherent and suspended cells,which are related to the cell position within the electric field and the strength of the electric field at specific distances from the electrodes. Modeling of electrode configurations predicts optimal designs to induce cell movement by DEP while limiting the induced transmembrane potential. We find DEP electric fields are not harmful to stem cells in suspension at short exposure times,thus providing a basis for developing DEP-based applications for stem cells.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
Santos T et al. (DEC 2012)
ACS nano 6 12 10463--74
Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain.
Herein,we report the use of retinoic acid-loaded polymeric nanoparticles as a potent tool to induce the neuronal differentiation of subventricular zone neural stem cells. The intracellular delivery of retinoic acid by the nanoparticles activated nuclear retinoic acid receptors,decreased stemness,and increased proneurogenic gene expression. Importantly,this work reports for the first time a nanoparticle formulation able to modulate in vivo the subventricular zone neurogenic niche. The work further compares the dynamics of initial stages of differentiation between SVZ cells treated with retinoic acid-loaded polymeric nanoparticles and solubilized retinoic acid. The nanoparticle formulation developed here may ultimately offer new perspectives to treat neurodegenerative diseases.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
Ben-David U et al. (FEB 2013)
Cell stem cell 12 2 167--179
Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen
The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns),nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound,PluriSIn 1,induces ER stress,protein synthesis attenuation,and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1),the key enzyme in oleic acid biosynthesis,revealing a unique role for lipid metabolism in hPSCs. PluriSIn 1 was also cytotoxic to mouse blastocysts,indicating that the dependence on oleate is inherent to the pluripotent state. Finally,application of PluriSIn 1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments. ?? 2013 Elsevier Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72822
72824
85850
85857
85870
85875
产品名:
PluriSIn-1
mTeSR™1
mTeSR™1
Liu Z et al. (FEB 2012)
Journal of stem cell research & therapy 2 1 1--8
Blockade of Autocrine TGF-$$ Signaling Inhibits Stem Cell Phenotype, Survival, and Metastasis of Murine Breast Cancer Cells.
Transforming growth factor beta (TGF-$$) signaling has been implicated in driving tumor progression and metastasis by inducing stem cell-like features in some human cancer cell lines. In this study,we have utilized a novel murine cell line NMuMG-ST,which acquired cancer stem cell (CSC) phenotypes during spontaneous transformation of the untransformed murine mammary cell line NMuMG,to investigate the role of autocrine TGF-$$ signaling in regulating their survival,metastatic ability,and the maintenance of cancer stem cell characteristics. We have retrovirally transduced a dominant-negative TGF-$$ type II receptor (DNRII) into the NMuMG-ST cell to abrogate autocrine TGF-$$ signaling. The expression of DNRII reduced TGF-$$ sensitivity of the NMuMG-ST cells in various cell-based assays. The blockade of autocrine TGF-$$ signaling reduced the ability of the cell to grow anchorage-independently and to resist serum deprivation-induced apoptosis. These phenotypes were associated with reduced levels of active and phosphorylated AKT and ERK,and Gli1 expression suggesting that these pathways contribute to the growth and survival of this model system. More interestingly,the abrogation of autocrine TGF-$$ signaling also led to the attenuation of several features associated with mammary stem cells including epithelial-mesenchymal transition,mammosphere formation,and expression of stem cell markers. When xenografted in athymic nude mice,the DNRII cells were also found to undergo apoptosis and induced significantly lower lung metastasis burden than the control cells even though they formed similar size of xenograft tumors. Thus,our results indicate that autocrine TGF-$$ signaling is involved in the maintenance and survival of stem-like cell population resulting in the enhanced metastatic ability of the murine breast cancer cells.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
P. Peng et al. (dec 2022)
Journal for immunotherapy of cancer 10 12
Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-$\gamma$ to modulate antitumor T-cell response after cryo-thermal therapy.
BACKGROUND Myeloid-derived suppressor cells (MDSCs) can potently inhibit T-cell activity,promote growth and metastasis of tumor and contribute to resistance to immunotherapy. Targeting MDSCs to alleviate their protumor functions and immunosuppressive activities is intimately associated with cancer immunotherapy. Natural killer (NK) cells can engage in crosstalk with multiple myeloid cells to alter adaptive immune responses,triggering T-cell immunity. However,whether the NK-cell-MDSC interaction can modulate the T-cell immune response requires further study. Cryo-thermal therapy could induce the maturation of MDSCs by creating an acute inflammatory environment to elicit a CD4+ Th1-dominant immune response,but the mechanism regulating this process remains unclear. METHODS NK cells were depleted and NKG2D was blocked with monoclonal antibodies in vivo. MDSCs,NK cells and T cells were assessed by flow cytometry and isolated by magnetic-activated cell sorting (MACS). MDSCs and NK cells were cocultured with T cells to determine their immunological function. The transcriptional profiles of MDSCs were measured by qRT-PCR and RNA-sequencing. Isolated NK cells and MDSCs by MACS were cocultured to study the viability and maturation of MDSCs regulated by NK cells. TIMER was used to comprehensively examine the immunological,clinical,and genomic features of tumors. RESULTS NK-cell activation after cryo-thermal therapy decreased MDSC accumulation and reprogrammed immunosuppressive MDSCs toward a mature phenotype to promote T cell antitumor immunity. Furthermore,we discovered that NK cells could kill MDSCs via the NKG2D-NKG2DL axis and promote MDSC maturation by interferon gamma (IFN-$\gamma$) in response to NKG2D. In addition,CD4+ Th1-dominant antitumor immune response was dependent on NKG2D,which promoted the major histocompatibility complex …¡ pathway of MDSCs. High activated NK-cell infiltration and NKG2D level in tumors were positively correlated with better clinical outcomes. CONCLUSIONS Cryo-thermal therapy induces effective CD4+ Th1-dominant antitumor immunity by activating NK cells to reprogram MDSCs,providing a promising therapeutic strategy for cancer immunotherapy.
View Publication
产品类型:
产品号#:
17666
18952
19855
18952RF
19855RF
17696
17696RF
17666RF
产品名:
EasySep™小鼠PE正选试剂盒II
EasySep™ 小鼠CD4正选试剂盒 II
EasySep™小鼠NK细胞分选试剂盒
RoboSep™ 小鼠CD4正选试剂盒II
RoboSep™ 小鼠NK细胞分选试剂盒
EasySep™小鼠PE正选试剂盒II
RoboSep™ 小鼠PE正选试剂盒II
RoboSep™ 小鼠PE正选试剂盒II
S. Kaur et al. (Mar 2024)
Frontiers in Cell and Developmental Biology 12 Suppl. ment_1
Effects of a humanized CD47 antibody and recombinant SIRPα proteins on triple negative breast carcinoma stem cells
Signal regulatory protein-α (SIRPα,SHPS-1,CD172a) expressed on myeloid cells transmits inhibitory signals when it engages its counter-receptor CD47 on an adjacent cell. Elevated CD47 expression on some cancer cells thereby serves as an innate immune checkpoint that limits phagocytic clearance of tumor cells by macrophages and antigen presentation to T cells. Antibodies and recombinant SIRPα constructs that block the CD47-SIRPα interaction on macrophages exhibit anti-tumor activities in mouse models and are in ongoing clinical trials for treating several human cancers. Based on prior evidence that engaging SIRPα can also alter CD47 signaling in some nonmalignant cells,we compared direct effects of recombinant SIRPα-Fc and a humanized CD47 antibody that inhibits CD47-SIRPα interaction (CC-90002) on CD47 signaling in cancer stem cells derived from the MDA-MB- 231 triple-negative breast carcinoma cell line. Treatment with SIRPα-Fc significantly increased the formation of mammospheres by breast cancer stem cells as compared to CC-90002 treatment or controls. Furthermore,SIRPα-Fc treatment upregulated mRNA and protein expression of ALDH1 and altered the expression of genes involved in epithelial/mesenchymal transition pathways that are associated with a poor prognosis and enhanced metastatic activity. This indicates that SIRPα-Fc has CD47-mediated agonist activities in breast cancer stem cells affecting proliferation and metastasis pathways that differ from those of CC-90002. This SIRPα-induced CD47 signaling in breast carcinoma cells may limit the efficacy of SIRPα decoy therapeutics intended to stimulate innate antitumor immune responses.
View Publication
产品类型:
产品号#:
01700
05620
05893
34411
34415
34421
34425
34450
34460
产品名:
ALDEFLUOR™ 试剂盒
MammoCult™人培养基试剂盒
AggreWell™ EB形成培养基
AggreWell™ 400 24孔板,1个
AggreWell™400 24孔板,5个
AggreWell™ 400 6孔板,1个
AggreWell™ 400 6孔板,5个
AggreWell™400 24孔板启动套装
AggreWell™ 400 6孔板启动套装
B. Cen et al. (Oct 2024)
Cancer Research Communications 4 10
Peroxisome Proliferator–Activated Receptor δ Suppresses the Cytotoxicity of CD8 + T Cells by Inhibiting RelA DNA-Binding Activity
The molecular mechanisms regulating CD8 + cytotoxic T lymphocytes (CTL) are not fully understood. Here,we show that the peroxisome proliferator–activated receptor δ (PPARδ) suppresses CTL cytotoxicity by inhibiting RelA DNA binding. Treatment of Apc Min/+ mice with the PPARδ agonist GW501516 reduced the activation of normal and tumor-associated intestinal CD8 + T cells and increased intestinal adenoma burden. PPARδ knockout or knockdown in CTLs increased their cytotoxicity against colorectal cancer cells,whereas overexpression of PPARδ or agonist treatment decreased it. Correspondingly,perforin,granzyme B,and IFNγ protein and mRNA levels were higher in PPARδ knockout or knockdown CTLs and lower in PPARδ overexpressing or agonist-treated CTLs. Mechanistically,we found that PPARδ binds to RelA,interfering with RelA–p50 heterodimer formation in the nucleus,thereby inhibiting its DNA binding in CTLs. Thus,PPARδ is a critical regulator of CTL effector function. Significance: Here,we provide the first direct evidence that PPARδ plays a critical role in suppressing the immune response against tumors by downregulating RelA DNA-binding activity. This results in decreased expression of perforin,granzyme B,and IFNγ. Thus,PPARδ may serve as a valuable target for developing future cancer immunotherapies.
View Publication