S. A. Ibitokou et al. ( 2018)
Journal of immunology 200 2 643--656
Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection.
Understanding the mechanisms of CD4 memory T cell (Tmem) differentiation in malaria is critical for vaccine development. However,the metabolic regulation of CD4 Tmem differentiation is not clear,particularly in persistent infections. In this study,we investigated the role of fatty acid synthesis (FAS) in Tmem development in Plasmodium chabaudi chronic mouse malaria infection. We show that T cell-specific deletion and early pharmaceutical inhibition of acetyl CoA carboxylase 1,the rate limiting step of FAS,inhibit generation of early memory precursor effector T cells (MPEC). To compare the role of FAS during early differentiation or survival of Tmem in chronic infection,a specific inhibitor of acetyl CoA carboxylase 1,5-(tetradecyloxy)-2-furoic acid,was administered at different times postinfection. Strikingly,the number of Tmem was only reduced when FAS was inhibited during T cell priming and not during the Tmem survival phase. FAS inhibition during priming increased effector T cell (Teff) proliferation and strongly decreased peak parasitemia,which is consistent with improved Teff function. Conversely,MPEC were decreased,in a T cell-intrinsic manner,upon early FAS inhibition in chronic,but not acute,infection. Early cure of infection also increased mitochondrial volume in Tmem compared with Teff,supporting previous reports in acute infection. We demonstrate that the MPEC-specific effect was due to the higher fatty acid content and synthesis in MPEC compared with terminally differentiated Teff. In conclusion,FAS in CD4 T cells regulates the early divergence of Tmem from Teff in chronic infection.
View Publication
产品类型:
产品号#:
18559
18559RF
产品名:
Yang X et al. (NOV 2010)
Cancer research 70 22 9463--72
Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells.
A relatively rare aldehyde dehydrogenase 1 (ALDH1)-positive stem cell-like" subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Chen Y-W et al. (NOV 2010)
Molecular cancer therapeutics 9 11 2879--92
Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells.
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer worldwide. Signal transducers and activators of transcription 3 (STAT3) signaling is reported to promote tumor malignancy and recurrence in HNSCC. Cucurbitacins,triterpenoid derivatives,are strong STAT3 inhibitors with anticancer properties. Recent studies have shown aldehyde dehydrogenase 1 (ALDH1) to be a marker of cancer stem cells (CSC) in HNSCC. The aim of this study was to investigate the therapeutic effect of cucurbitacin I in HNSCC-derived CSCs. Using immunohistochemical analysis,we firstly showed that CD44,ALDH1,and phosphorylated STAT3 (p-STAT3) were higher in high-grade HNSCCs,and that triple positivity for CD44/ALDH1/p-STAT3 indicated a worse prognosis for HNSCC patients. Secondly,CD44(+)ALDH1(+) cells isolated from seven HNSCC patients showed greater tumorigenicity,radioresistance,and high expression of stemness (Bmi-1/Oct-4/Nanog) and epithelial-mesenchymal-transitional (Snail/Twist) genes as p-STAT3 level increased. Furthermore,we found that cucurbitacin I (JSI-124) can effectively inhibit the expression of p-STAT3 and capacities for tumorigenicity,sphere formation,and radioresistance in HNSCC-CD44(+)ALDH1(+). Notably,150 nmol/L cucurbitacin I effectively blocked STAT3 signaling and downstream survivin and Bcl-2 expression,and it induced apoptosis in HNSCC-CD44(+)ALDH1(+). Moreover,microarray data indicated that 100 nmol/L cucurbitacin I facilitated CD44(+)ALDH1(+) cells to differentiate into CD44?ALDH1? and enhanced the radiosensitivity of HNSCC-CD44(+)ALDH1(+). Xenotransplant experiments revealed that cucurbitacin I combined with radiotherapy significantly suppressed tumorigenesis and lung metastasis and further improved the survival rate in HNSCC-CD44(+)ALDH1(+)-transplanted immunocompromised mice. Taken together,our data show that cucurbitacin I,STAT3 inhibitor,reduces radioresistant,distant-metastatic,and CSC-like properties of HNSCC-CD44(+)ALDH1(+) cells. The potential of cucurbitacin I as a radiosensitizer should be verified in future anti-CSC therapy.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Lebson L et al. (DEC 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 12 7161--4
Cutting edge: The transcription factor Kruppel-like factor 4 regulates the differentiation of Th17 cells independently of RORγt.
Th17 cells play a significant role in inflammatory and autoimmune responses. Although a number of molecular pathways that contribute to the lineage differentiation of T cells have been discovered,the mechanisms by which lineage commitment occurs are not fully understood. Transcription factors play a key role in driving T cells toward specific lineages. We have identified a role for the transcription factor Kruppel-like factor (KLF) 4 in the development of IL-17-producing CD4(+) T cells. KLF4 was required for the production of IL-17,and further,chromatin immunoprecipitation analysis demonstrated binding of KLF4 to the IL-17 promoter,indicating a direct effect on the regulation of IL-17. Further,KLF4-deficient T cells upregulated expression of retinoic acid-related orphan receptor γt similar to wild-type during the polarization process toward Th17,suggesting that these two transcription factors are regulated independently.
View Publication
产品类型:
产品号#:
19752
19752RF
产品名:
Allan LL et al. (MAY 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 9 5261--72
CD1d and CD1c expression in human B cells is regulated by activation and retinoic acid receptor signaling.
B cell activation and Ab production in response to protein Ags requires presentation of peptides for recruitment of T cell help. We and others have recently demonstrated that B cells can also acquire innate help by presenting lipid Ags via CD1d to NKT cells. Given the newfound contribution of NKT cells to humoral immunity,we sought to identify the pathways that regulate CD1 molecule expression in human B cells. We show that ex vivo,activated and memory B cells expressed lower levels of CD1d compared with resting,naive,and marginal zone-like B cells. In vitro,CD1d was downregulated by all forms of B cell activation,leaving a narrow temporal window in which B cells could activate NKT cells. CD1c expression and function also decreased following activation by CD40L alone,whereas activation via the BCR significantly upregulated CD1c,particularly on marginal zone-like B cells. We found that the CD40L-induced downregulation of CD1d and CD1c correlated with diminished expression of retinoic acid receptor α (RARα) response genes,an effect that was reversed by RARα agonists. However,BCR-induced upregulation of CD1c was independent of the RAR pathway. Our findings that both CD1d and CD1c are upregulated by RARα signaling in human B cells is distinct from effects reported in dendritic cells,in which CD1c is inversely downregulated. One functional consequence of CD1d upregulation by retinoic acid was NKT cell cytotoxicity toward B cells. These results are central to our understanding of how CD1-restricted T cells may control humoral immunity.
View Publication
产品类型:
产品号#:
01700
01705
18054
18054RF
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Silva IA et al. (JUN 2011)
Cancer research 71 11 3991--4001
Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival.
Markers that reliably identify cancer stem cells (CSC) in ovarian cancer could assist prognosis and improve strategies for therapy. CD133 is a reported marker of ovarian CSC. Aldehyde dehydrogenase (ALDH) activity is a reported CSC marker in several solid tumors,but it has not been studied in ovarian CSC. Here we report that dual positivity of CD133 and ALDH defines a compelling marker set in ovarian CSC. All human ovarian tumors and cell lines displayed ALDH activity. ALDH(+) cells isolated from ovarian cancer cell lines were chemoresistant and preferentially grew tumors,compared with ALDH(-) cells,validating ALDH as a marker of ovarian CSC in cell lines. Notably,as few as 1,000 ALDH(+) cells isolated directly from CD133(-) human ovarian tumors were sufficient to generate tumors in immunocompromised mice,whereas 50,000 ALDH(-) cells were unable to initiate tumors. Using ALDH in combination with CD133 to analyze ovarian cancer cell lines,we observed even greater growth in the ALDH(+)CD133(+) cells compared with ALDH(+)CD133(-) cells,suggesting a further enrichment of ovarian CSC in ALDH(+)CD133(+) cells. Strikingly,as few as 11 ALDH(+)CD133(+) cells isolated directly from human tumors were sufficient to initiate tumors in mice. Like other CSC,ovarian CSC exhibited increased angiogenic capacity compared with bulk tumor cells. Finally,the presence of ALDH(+)CD133(+) cells in debulked primary tumor specimens correlated with reduced disease-free and overall survival in ovarian cancer patients. Taken together,our findings define ALDH and CD133 as a functionally significant set of markers to identify ovarian CSCs.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Zhang Z and Alexanian AR (MAY 2014)
Journal of tissue engineering and regenerative medicine 8 5 407--413
The neural plasticity of early-passage human bone marrow-derived mesenchymal stem cells and their modulation with chromatin-modifying agents.
Mesenchymal stem cells (MSCs) in their immature state express a variety of genes of the three germ layers at relatively low or moderate levels that might explain their phenomenal plasticity. Numerous recent studies have demonstrated that under the appropriate conditions in vitro and in vivo the expression of different sets of these genes can be upregulated,turning MSCs into variety of cell lineages of mesodermal,ectodermal and endodermal origin. While transdifferentiation of MSCs is still controversial,these unique properties make MSCs an ideal autologous source of easily reprogrammable cells. Recently,using the approach of cell reprogramming by biological active compounds that interfere with chromatin structure and function,as well as with specific signalling pathways that promote neural fate commitment,we have been able to generate neural-like cells from human bone marrow (BM)-derived MSCs (hMSCs). However,the efficiency of neural transformation of hMSCs induced by this approach gradually declined with passaging. To elucidate the mechanisms that underlie the higher plasticity of early-passage hMSCs,comparative analysis of the expression levels of several pluripotent and neural genes was conducted for early- and late-passage hMSCs. The results demonstrated that early-passage hMSCs expressed the majority of these genes at low and moderate levels that gradually declined at late passages. Neural induction further increased the expression of some of these genes in hMSCs,accompanied by morphological changes into neural-like cells. We concluded that low and moderate expression of several pluripotent and neural genes in early-passage hMSCs could explain their higher plasticity and pliability for neural induction. Copyright textcopyright 2012 John Wiley & Sons,Ltd.
View Publication
Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions.
This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol,passaging one six-well or 10-cm plate of cells takes about 6-7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization,centrifugation or drug treatment. It also allows for higher throughput,requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation,colony expansion,cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion,and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages,this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.
View Publication
产品类型:
产品号#:
05910
05940
产品名:
Krueger WH et al. (JUL 2013)
PLoS ONE 8 7 e67296
Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis,and their proper function is of key importance for cardiovascular health. In particular,hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis,dyslipidemias,the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol,actively secrete cholesterol into the medium,and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly,it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally,the system will also be useful for mechanistic studies of heritable dyslipidemias,drug discovery,and investigation of modes of action of cholesterol-modulatory drugs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Yang L et al. (MAY 2014)
Modern pathology : an official journal of the United States and Canadian Academy of Pathology,Inc 27 5 775--783
ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma.
Invasion and metastasis are the major cause of deaths in patients with esophageal cancer. In this study,we isolated cancer stem-like cells from an esophageal squamous cell carcinoma cell line EC109 based on aldehyde dehydrogenase 1A1 (ALDH1A1),and found that ALDH1A1(high) cells possessed the capacities of self-renewal,differentiation and tumor initiation,indications of stem cell properties. To support their stemness,ALDH1A1(high) cells exhibited increased potential of invasion and metastasis as compared with ALDH1A1(low) cells. ALDH1A1(high) esophageal squamous cell carcinoma cells expressed increased levels of mRNA for vimentin,matrix metalloproteinase 2,7 and 9 (MMP2,MMP7 and MMP9),but decreased the level of E-cadherin mRNA,suggesting that epithelial-mesenchymal transition and secretary MMPs may be attributed to the high invasive and metastatic capabilities of ALDH1A1(high) cells. Furthermore,we examined esophageal squamous cell carcinoma specimens from 165 patients and found that ALDH1A1(high) cells were associated with esophageal squamous dysplasia and the grades,differentiation and invasion depth,lymph node metastasis and UICC stage of esophageal squamous cell carcinoma,as well as poor prognosis of patients. Our results provide the strong evidence that ALDH1A1(high) cancer stem-like cells contribute to the invasion,metastasis and poor outcome of human esophageal squamous cell carcinoma.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
de Leeuw DC et al. (APR 2014)
Cancer research 74 7 2094--2105
Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication.
Despite high remission rates after therapy,60% to 70% of patients with acute myeloid leukemia (AML) do not survive 5 years after their initial diagnosis. The main cause of treatment failures may be insufficient eradication of a subpopulation of leukemic stem-like cells (LSC),which are thought to be responsible for relapse by giving rise to more differentiated leukemic progenitors (LP). To address the need for therapeutic targets in LSCs,we compared microRNA (miRNA) expression patterns in highly enriched healthy CD34(+)CD38(-) hematopoietic stem cells (HSC),CD34(+)CD38(-) LSCs,and CD34(+)CD38(+) LPs,all derived from the same patients' bone marrow (BM) specimens. In this manner,we identified multiple differentially expressed miRNAs,in particular miR-126,which was highly expressed in HSCs and increased in LSCs compared with LPs,consistent with a stem-like cell function. High miR-126 expression in AML was associated with poor survival,higher chance of relapse,and expression of genes present in LSC/HSC signatures. Notably,attenuating miR-126 expression in AML cells reduced in vitro cell growth by inducing apoptosis,but did not affect the survival of normal BM in which it instead enhanced expansion of HSCs. Furthermore,targeting miR-126 in LSCs and LPs reduced their clonogenic capacity and eliminated leukemic cells,again in the absence of similar inhibitory effects on normal BM cells. Our results define miR-126 as a therapeutic focus to specifically eradicate LSCs and improve AML outcome.
View Publication
Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells.
About half of the human genome consists of highly repetitive elements,most of which are considered dispensable for human life. Here,we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation,thereby generating hundreds of co-expressed,ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements,indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription,many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary,we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
View Publication