T. Pattarabanjird et al. (apr 2022)
Circulation research 130 7 981--993
B-1b Cells Possess Unique bHLH-Driven P62-Dependent Self-Renewal and Atheroprotection.
BACKGROUND B1a and B1b lymphocytes produce IgM that inactivates oxidation-specific epitopes (IgMOSE) on LDL (low-density lipoprotein) and protects against atherosclerosis. Loss of ID3 (inhibitor of differentiation 3) in B cells selectively promotes B1b but not B1a cell numbers,leading to higher IgMOSE production and reduction in atherosclerotic plaque formation. Yet,the mechanism underlying this regulation remains unexplored. METHODS Bulk RNA sequencing was utilized to identify differentially expressed genes in B1a and B1b cells from Id3KO and Id3WT mice. CRISPR/Cas9 and lentiviral genome editing coupled with adoptive transfer were used to identify key Id3-dependent signaling pathways regulating B1b cell proliferation and the impact on atherosclerosis. Biospecimens from humans with advanced coronary artery disease imaging were analyzed to translate murine findings to human subjects with coronary artery disease. RESULTS Through RNA sequencing,P62 was found to be enriched in Id3KO B1b cells. Further in vitro characterization reveals a novel role for P62 in mediating BAFF (B-cell activating factor)-induced B1b cell proliferation through interacting with TRAF6 (tumor necrosis factor receptor 6) and activating NF-$\kappa$B (nuclear factor kappa B),leading to subsequent C-MYC (C-myelocytomatosis) upregulation. Promoter-reporter assays reveal that Id3 inhibits the E2A protein from activating the P62 promoter. Mice adoptively transferred with B1 cells overexpressing P62 exhibited an increase in B1b cell number and IgMOSE levels and were protected against atherosclerosis. Consistent with murine mechanistic findings,P62 expression in human B1 cells was significantly higher in subjects harboring a function-impairing single nucleotide polymorphism (SNP) at rs11574 position in the ID3 gene and directly correlated with plasma IgMOSE levels. CONCLUSIONS This study unveils a novel role for P62 in driving BAFF-induced B1b cell proliferation and IgMOSE production to attenuate diet-induced atherosclerosis. Results identify a direct role for Id3 in antagonizing E2A from activating the p62 promoter. Moreover,analysis of putative human B1 cells also implicates these pathways in coronary artery disease subjects,suggesting P62 as a new immunomodulatory target for treating atherosclerosis.
View Publication
产品类型:
产品号#:
19554
19554RF
产品名:
EasySep™人Pan-B细胞富集试剂盒
RoboSep™ 人Pan-B细胞富集试剂盒
A. J. Freeman et al. (sep 2019)
Cell reports 28 11 2784--2794.e5
Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion.
Despite the clinical success of cancer immunotherapies,the majority of patients fail to respond or develop resistance through disruption of pathways that promote neo-antigen presentation on MHC I molecules. Here,we conducted a series of unbiased,genome-wide CRISPR/Cas9 screens to identify genes that limit natural killer (NK) cell anti-tumor activity. We identified that genes associated with antigen presentation and/or interferon-$\gamma$ (IFN-$\gamma$) signaling protect tumor cells from NK cell killing. Indeed,Jak1-deficient melanoma cells were sensitized to NK cell killing through attenuated NK cell-derived IFN-$\gamma$-driven transcriptional events that regulate MHC I expression. Importantly,tumor cells that became resistant to T cell killing through enrichment of MHC I-deficient clones were highly sensitive to NK cell killing. Taken together,we reveal the genes targeted by tumor cells to drive checkpoint blockade resistance but simultaneously increase their vulnerability to NK cells,unveiling NK cell-based immunotherapies as a strategy to antagonize tumor immune escape.
View Publication
产品类型:
产品号#:
05513
产品名:
MesenCult™ 扩增试剂盒 (小鼠)
K. Kamal et al. (Oct 2025)
European Journal of Immunology 55 10
Induction of Tolerogenic Dendritic Cells by a Noncoding Oligonucleotide
Tolerogenic dendritic cells (tolDCs) that dampen T cell responses can be induced from blood monocytes in vitro using factors such as Vitamin D3 (VitD),dexamethasone,IL‐10,or rapamycin. However,challenges remain in obtaining robust and efficient generation of cell therapy‐based tolDCs without compromising their viability. We recently reported that CCR2‐dependent recruitment of monocytic cells,with the capacity to dampen T‐helper responses,occurs in mice treated with a single‐stranded oligonucleotide (ssON). Here,we investigated the effects of this immunomodulatory noncoding ssON on differentiating human monocytes towards DC in the presence of IL‐4 and GM‐CSF (moDC). The moDC differentiated in the presence of ssON upregulated CD1a but also increased their expression of PD‐L1. The differentiation of monocytes to moDC in the presence of ssON introduced transcriptomic changes,many of which overlapped with VitD‐moDC and resulted in moDCs with altered lipopolysaccharide (LPS)‐responsiveness. Moreover,ssON‐moDC exhibited a low capacity to stimulate alloreactive T cells in vitro and instead promoted the induction of CD4+FoxP3+CD25+ T cells. Experiments using chemical reagents support a role for PPAR‐γ in the generation of ssON‐moDC. Collectively,our data show that monocytes differentiated with IL‐4,GM‐CSF,and ssON generate cells with phenotypic and functional characteristics of tolDCs. In this article,the authors elucidated the immunoregulatory role of an oligonucleotide (ssON) that favors the induction of human tolerogenic dendritic cells (DC). The tolerogenic profile was evidenced by reduced responsiveness to lipopolysaccharides (LPS) (A). Importantly,the tolerogenic DCs had upregulated PD‐L1 molecules and functionally inhibited the proliferation of alloreactive T cells and induced FoxP3+ Tregs (B). This study envisions the development of ssON as therapeutic for rebalancing overactive T‐helper cell responses.
View Publication
产品类型:
产品号#:
100-0695
17951
17951RF
产品名:
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
X. Xia et al. (Nov 2025)
Cell Communication and Signaling : CCS 23 10
Netrin-1-UNC5B/neogenin axis enhances the stemness of colorectal cancer cells
Cancer stem cells were prominent responsible for cancer initiation,metastasis,and invasion as well as therapeutic resistance in colorectal cancer (CRC). The extracellular axon guidance factor netrin-1 has been found to be overexpressed in several malignant cancers such as glioma,lung cancers,and colorectal cancer. However,the role of netrin-1 on cancer stemness in CRC remains unveiled. Our study revealed high expression of netrin-1 in colorectal cancer tissues and its ability to promote cancer stemness by interacting with receptors UNC5B and neogenin on murine colorectal cancer cell. Mechanistically,the netrin-1-UNC5B/neogenin axis activates the downstream NF-κB and ERK1/2 signaling pathways,reinforcing the stemness properties of tumor cells,and further exacerbating tumor progression. Clinically,netrin-1 expression associated with poor survival and high CD133 expression in patients with CRC. Taken together,these results suggest that netrin-1 blockade could be a compelling therapeutic strategy to improve the poor outcomes and trigger cancer stemness inhibition in CRC treatment.
View Publication
产品类型:
产品号#:
01700
产品名:
ALDEFLUOR™ 试剂盒
Stanford EA et al. ( 2016)
BMC biology 14 20
The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells.
BACKGROUND Self-renewing,chemoresistant breast cancer stem cells are believed to contribute significantly to cancer invasion,migration and patient relapse. Therefore,the identification of signaling pathways that regulate the acquisition of stem-like qualities is an important step towards understanding why patients relapse and towards development of novel therapeutics that specifically target cancer stem cell vulnerabilities. Recent studies identified a role for the aryl hydrocarbon receptor (AHR),an environmental carcinogen receptor implicated in cancer initiation,in normal tissue-specific stem cell self-renewal. These studies inspired the hypothesis that the AHR plays a role in the acquisition of cancer stem cell-like qualities. RESULTS To test this hypothesis,AHR activity in Hs578T triple negative and SUM149 inflammatory breast cancer cells were modulated with AHR ligands,shRNA or AHR-specific inhibitors,and phenotypic,genomic and functional stem cell-associated characteristics were evaluated. The data demonstrate that (1) ALDH(high) cells express elevated levels of Ahr and Cyp1b1 and Cyp1a1,AHR-driven genes,(2) AHR knockdown reduces ALDH activity by 80%,(3) AHR hyper-activation with several ligands,including environmental ligands,significantly increases ALDH1 activity,expression of stem cell- and invasion/migration-associated genes,and accelerates cell migration,(4) a significant correlation between Ahr or Cyp1b1 expression (as a surrogate marker for AHR activity) and expression of stem cell- and invasion/migration-associated gene sets is seen with genomic data obtained from 79 human breast cancer cell lines and over 1,850 primary human breast cancers,(5) the AHR interacts directly with Sox2,a master regulator of self-renewal; AHR ligands increase this interaction and nuclear SOX2 translocation,(6) AHR knockdown inhibits tumorsphere formation in low adherence conditions,(7) AHR inhibition blocks the rapid migration of ALDH(high) cells and reduces ALDH(high) cell chemoresistance,(8) ALDH(high) cells are highly efficient at initiating tumors in orthotopic xenografts,and (9) AHR knockdown inhibits tumor initiation and reduces tumor Aldh1a1,Sox2,and Cyp1b1 expression in vivo. CONCLUSIONS These data suggest that the AHR plays an important role in development of cells with cancer stem cell-like qualities and that environmental AHR ligands may exacerbate breast cancer by enhancing expression of these properties.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Zhang S et al. (AUG 2011)
Human Molecular Genetics 20 16 3176--3187
Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin.
Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilson's disease is a genetic disease caused by mutations in the ATP7B gene,whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly,the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations),though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilson's disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover,gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence,our work describes an attractive model for studying the pathogenesis of Wilson's disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future,once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved,hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilson's disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Chow AKM et al. (DEC 2015)
Molecular cancer 14 1 80
Preclinical analysis of the anti-tumor and anti-metastatic effects of Raf265 on colon cancer cells and CD26(+) cancer stem cells in colorectal carcinoma.
BACKGROUND In colorectal carcinoma (CRC),activation of the Raf/MEK/ERK signaling pathway is commonly observed. In addition,the commonly used 5FU-based chemotherapy in patients with metastatic CRC was found to enrich a subpopulation of CD26(+) cancer stem cells (CSCs). As activation of the Raf/MEK/ERK signaling pathway was also found in the CD26(+) CSCs and therefore,we hypothesized that an ATP-competitive pan-Raf inhibitor,Raf265,is effective in eliminating the cancer cells and the CD26(+) CSCs in CRC patients. METHODS HT29 and HCT116 cells were treated with various concentrations of Raf265 to study the anti-proliferative and apoptotic effects of Raf265. Anti-tumor effect was also demonstrated using a xenograft model. Cells were also treated with Raf265 in combination with 5FU to demonstrate the anti-migratory and invasive effects by targeting on the CD26(+) CSCs and the anti-metastatic effect of the combined treatment was shown in an orthotopic CRC model. RESULTS Raf265 was found to be highly effective in inhibiting cell proliferation and tumor growth through the inhibition of the RAF/MEK/ERK signaling pathway. In addition,anti-migratory and invasive effect was found with Raf265 treatment in combination with 5FU by targeting on the CD26(+) cells. Finally,the anti-tumor and anti-metastatic effect of Raf265 in combination with 5FU was also demonstrated. CONCLUSIONS This preclinical study demonstrates the anti-tumor and anti-metastatic activity of Raf265 in CRC,providing the basis for exploiting its potential use and combination therapy with 5FU in the clinical treatment of CRC.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Rubin JS et al. (JAN 1991)
Proceedings of the National Academy of Sciences of the United States of America 88 2 415--9
A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor.
A heparin-binding mitogen was isolated from conditioned medium of human embryonic lung fibroblasts. It exhibited broad target-cell specificity whose pattern was distinct from that of any known growth factor. It rapidly stimulated tyrosine phosphorylation of a 145-kDa protein in responsive cells,suggesting that its signaling pathways involved activation of a tyrosine kinase. Purification identified a major polypeptide with an apparent molecular mass of 87 kDa under reducing conditions. Partial amino acid sequence analysis and cDNA cloning revealed that it was a variant of hepatocyte growth factor,a mitogen thought to be specific for hepatic cells and structurally related to plasminogen. Recombinant expression of the cDNA in COS-1 cells established that it encoded the purified growth factor. Its site of synthesis and spectrum of targets imply that this growth factor may play an important role as a paracrine mediator of the proliferation of melanocytes and endothelial cells,as well as cells of epithelial origin.
View Publication
产品类型:
产品号#:
02653
产品名:
Chen S et al. (APR 2009)
Nature chemical biology 5 4 258--65
A small molecule that directs differentiation of human ESCs into the pancreatic lineage.
Stepwise differentiation from embryonic stem cells (ESCs) to functional insulin-secreting beta cells will identify key steps in beta-cell development and may yet prove useful for transplantation therapy for diabetics. An essential step in this schema is the generation of pancreatic progenitors--cells that express Pdx1 and produce all the cell types of the pancreas. High-content chemical screening identified a small molecule,(-)-indolactam V,that induces differentiation of a substantial number of Pdx1-expressing cells from human ESCs. The Pdx1-expressing cells express other pancreatic markers and contribute to endocrine,exocrine and duct cells,in vitro and in vivo. Further analyses showed that (-)-indolactam V works specifically at one stage of pancreatic development,inducing pancreatic progenitors from definitive endoderm. This study describes a chemical screening platform to investigate human ESC differentiation and demonstrates the generation of a cell population that is a key milepost on the path to making beta cells.
View Publication
产品类型:
产品号#:
72312
72314
产品名:
(-) -Indolactam V(吲哚内酰胺 V)
Lippmann ES et al. (FEB 2014)
Scientific reports 4 February 2014 4160
A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources.
Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics,but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge,we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs),pericytes,astrocytes and neurons derived from renewable cell sources. First,retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs,particularly through adherens junction,tight junction,and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (˜5,000 $\$(2)). Overall,this scalable human BBB model may enable a wide range of neuroscience studies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Cao X et al. (JAN 2015)
Respiratory research 16 30
Tight junction disruption by cadmium in an in vitro human airway tissue model.
BACKGROUND: The cadmium (Cd) present in air pollutants and cigarette smoke has the potential of causing multiple adverse health outcomes involving damage to pulmonary and cardiovascular tissue. Injury to pulmonary epithelium may include alterations in tight junction (TJ) integrity,resulting in impaired epithelial barrier function and enhanced penetration of chemicals and biomolecules. Herein,we investigated mechanisms involved in the disruption of TJ integrity by Cd exposure using an in vitro human air-liquid-interface (ALI) airway tissue model derived from normal primary human bronchial epithelial cells. METHODS: ALI cultures were exposed to noncytotoxic doses of CdCl2 basolaterally and TJ integrity was measured by Trans-Epithelial Electrical Resistance (TEER) and immunofluorescence staining with TJ markers. PCR array analysis was used to identify genes involved with TJ collapse. To explore the involvement of kinase signaling pathways,cultures were treated with CdCl2 in the presence of kinase inhibitors specific for cellular Src or Protein Kinase C (PKC). RESULTS: Noncytotoxic doses of CdCl2 resulted in the collapse of barrier function,as demonstrated by TEER measurements and Zonula occludens-1 (ZO-1) and occludin staining. CdCl2 exposure altered the expression of several groups of genes encoding proteins involved in TJ homeostasis. In particular,down-regulation of select junction-interacting proteins suggested that a possible mechanism for Cd toxicity involves disruption of the peripheral junctional complexes implicated in connecting membrane-bound TJ components to the actin cytoskeleton. Inhibition of kinase signaling using inhibitors specific for cellular Src or PKC preserved the integrity of TJs,possibly by preventing occludin tyrosine hyperphosphorylation,rather than reversing the down-regulation of the junction-interacting proteins. CONCLUSIONS: Our findings indicate that acute doses of Cd likely disrupt TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation via kinase activation and by direct disruption of the junction-interacting complex.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Yang Y et al. (MAY 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 18 E2337--------46
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here,we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074),followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG,can be propagated clonally on either Matrigel or gelatin,and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG,LEFTY1,and LEFTY2). In nonconditioned medium lacking FGF2,the colonies spontaneously differentiated along multiple lineages,including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast,and especially syncytiotrophoblast,whereas an A83-01/PD173074 combination favored increased expression of HLA-G,a marker of extravillous trophoblast. Together,these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
View Publication