I. M. Saldana-Guerrero et al. (May 2024)
Nature Communications 15
A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations
Early childhood tumours arise from transformed embryonic cells,which often carry large copy number alterations (CNA). However,it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains,which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives,the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN,whose amplification co-occurs with CNAs in NB. Moreover,CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together,our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours. Subject terms: Paediatric cancer,Stem cells,Disease model,Cancer genomics,Embryonal neoplasms
View Publication
产品类型:
产品号#:
05790
产品名:
BrainPhys™神经元培养基
J. S. Saini et al. (MAY 2017)
Cell stem cell 20 5 635--647.e7
Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE),a cell monolayer essential for photoreceptor survival,and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD,which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD,including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins,and those from the AMD donors show significantly increased complement and inflammatory factors,which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening,combined with transcriptome analysis,we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome,ribosome,and chromatin-modifying genes. Thus,targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.
View Publication
产品类型:
产品号#:
85850
85857
85870
85875
05835
05839
产品名:
mTeSR™1
mTeSR™1
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
Jiang T et al. (FEB 2009)
Cancer research 69 3 845--54
Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer.
The basic helix-loop-helix transcription factor achaete-scute complex homologue 1 (ASCL1) is essential for the development of normal lung neuroendocrine cells as well as other endocrine and neural tissues. Small cell lung cancer (SCLC) and non-SCLC with neuroendocrine features express ASCL1,where the factor may play a role in the virulence and primitive neuroendocrine phenotype of these tumors. In this study,RNA interference knockdown of ASCL1 in cultured SCLC resulted in inhibition of soft agar clonogenic capacity and induction of apoptosis. cDNA microarray analyses bolstered by expression studies,flow cytometry,and chromatin immunoprecipitation identified two candidate stem cell marker genes,CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1),to be directly regulated by ASCL1 in SCLC. In SCLC direct xenograft tumors,we detected a relatively abundant CD133(high)-ASCL1(high)-ALDH1(high) subpopulation with markedly enhanced tumorigenicity compared with cells with weak CD133 expression. Tumorigenicity in the CD133(high) subpopulation depended on continued ASCL1 expression. Whereas CD133(high) cells readily reconstituted the range of CD133 expression seen in the original xenograft tumor,CD133(low) cells could not. Our findings suggest that a broad range of SCLC cells has tumorigenic capacity rather than a small discrete population. Intrinsic tumor cell heterogeneity,including variation in key regulatory factors such as ASCL1,can modulate tumorigenicity in SCLC.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Hochwald SN et al. ( 2009)
Cell cycle (Georgetown,Tex.) 8 15 2435--2443
A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer.
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is overexpressed in many types of tumors,including pancreatic cancer,and plays an important role in cell adhesion and survival signaling. Pancreatic cancer is a lethal disease and is very resistant to chemotherapy,and FAK has been shown recently to assist in tumor cell survival. Therefore,FAK is an excellent potential target for anti-cancer therapy. We identified a novel small molecule inhibitor (1,2,4,5-Benzenetetraamine tetrahydrochloride,that we called Y15) targeting the main autophosphorylation site of FAK and hypothesized that it would be an effective treatment strategy against human pancreatic cancer. Y15 specifically blocked phosphorylation of Y397-FAK and total phosphorylation of FAK. It directly inhibited FAK autophosphorylation in a dose- and time-dependent manner. Furthermore,Y15 increased pancreatic cancer cell detachment and inhibited cell adhesion in a dose-dependent manner. Y15 effectively caused human pancreatic tumor regression in vivo,when administered alone and its effects were synergistic with gemcitabine chemotherapy. This was accompanied by a decrease in Y397-phosphorylation of FAK in the tumors treated with Y15. Thus,targeting the Y397 site of FAK in pancreatic cancer with the small molecule inhibitor,1,2,4,5-Benzenetetraamine tetrahydrochloride,is a potentially effective treatment strategy in this deadly disease.
View Publication
产品类型:
产品号#:
73132
73134
产品名:
Laurent B et al. (JAN 2010)
Blood 115 3 687--95
High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription.
Gfi-1B is a transcriptional repressor that is crucial for erythroid differentiation: inactivation of the GFI1B gene in mice leads to embryonic death due to failure to produce differentiated red cells. Accordingly,GFI1B expression is tightly regulated during erythropoiesis,but the mechanisms involved in such regulation remain partially understood. We here identify HMGB2,a high-mobility group HMG protein,as a key regulator of GFI1B transcription. HMGB2 binds to the GFI1B promoter in vivo and up-regulates its trans-activation most likely by enhancing the binding of Oct-1 and,to a lesser extent,of GATA-1 and NF-Y to the GFI1B promoter. HMGB2 expression increases during erythroid differentiation concomitantly to the increase of GfI1B transcription. Importantly,knockdown of HMGB2 in immature hematopoietic progenitor cells leads to decreased Gfi-1B expression and impairs their erythroid differentiation. We propose that HMGB2 potentiates GATA-1-dependent transcription of GFI1B by Oct-1 and thereby controls erythroid differentiation.
View Publication
产品类型:
产品号#:
04100
04230
09600
09650
产品名:
MethoCult™ H4100
MethoCult™H4230
StemSpan™ SFEM
StemSpan™ SFEM
Yuki N et al. (AUG 2004)
Proceedings of the National Academy of Sciences 101 31 11404--09
Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome
Molecular mimicry between microbial and self-components is postulated as the mechanism that accounts for the antigen and tissue specificity of immune responses in postinfectious autoimmune diseases. Little direct evidence exists,and research in this area has focused principally on T cell-mediated,antipeptide responses,rather than on humoral responses to carbohydrate structures. Guillain-Barré syndrome,the most frequent cause of acute neuromuscular paralysis,occurs 1-2 wk after various infections,in particular,Campylobacter jejuni enteritis. Carbohydrate mimicry [Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-] between the bacterial lipooligosaccharide and human GM1 ganglioside is seen as having relevance to the pathogenesis of Guillain-Barré syndrome,and conclusive evidence is reported here. On sensitization with C. jejuni lipooligosaccharide,rabbits developed anti-GM1 IgG antibody and flaccid limb weakness. Paralyzed rabbits had pathological changes in their peripheral nerves identical with those present in Guillain-Barré syndrome. Immunization of mice with the lipooligosaccharide generated a mAb that reacted with GM1 and bound to human peripheral nerves. The mAb and anti-GM1 IgG from patients with Guillain-Barré syndrome did not induce paralysis but blocked muscle action potentials in a muscle-spinal cord coculture,indicating that anti-GM1 antibody can cause muscle weakness. These findings show that carbohydrate mimicry is an important cause of autoimmune neuropathy.
View Publication
产品类型:
产品号#:
03800
03801
03802
03803
03804
03805
03806
产品名:
ClonaCell™-HY 杂交瘤试剂盒
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY Medium
ClonaCell™-HY PEG (融合)
Tan Q et al. ( 2017)
Biomaterials 113 118--132
Human airway organoid engineering as a step toward lung regeneration and disease modeling
Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments,and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells,lung fibroblasts,and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis,and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids,discrete areas of both proximal and distal epithelial markers were observed over time in culture,demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-??1) in culture,and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions,and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Yeung YA et al. (NOV 2016)
Nature communications 7 13376
Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.
Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe,we analysed the memory humoral response against IsdB,a protein involved in iron acquisition,in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains,IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions,the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39,with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39,while part of the adaptive immune system,may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.
View Publication
产品类型:
产品号#:
19554
19554RF
19666
19669
100-0404
19669RF
产品名:
EasySep™人Pan-B细胞富集试剂盒
RoboSep™ 人Pan-B细胞富集试剂盒
EasySep™ Direct人中性粒细胞分选试剂盒
EasySep™ Direct人单核细胞分选试剂盒
RoboSep™ 人中性粒细胞分选试剂盒
RoboSep™ Direct人单核细胞分选试剂盒
(Apr 2025)
Journal of Neuroinflammation 22 7341
Microglia determine an immune-challenged environment and facilitate ibuprofen action in human retinal organoids
Prenatal immune challenges pose significant risks to human embryonic brain and eye development. However,our knowledge about the safe usage of anti-inflammatory drugs during pregnancy is still limited. While human induced pluripotent stem cells (hIPSC)-derived brain organoid models have started to explore functional consequences upon viral stimulation,these models commonly lack microglia,which are susceptible to and promote inflammation. Furthermore,microglia are actively involved in neuronal development. Here,we generate hIPSC-derived microglia precursor cells and assemble them into retinal organoids. Once the outer plexiform layer forms,these hIPSC-derived microglia (iMG) fully integrate into the retinal organoids. Since the ganglion cell survival declines by this time in 3D-retinal organoids,we adapted the model into 2D and identify that the improved ganglion cell number significantly decreases only with iMG presence. In parallel,we applied the immunostimulant POLY(I:C) to mimic a fetal viral infection. While POLY(I:C) exposure alters the iMG phenotype,it does not hinder their interaction with ganglion cells. Furthermore,iMG significantly enhance the supernatant’s inflammatory secretome and increase retinal cell proliferation. Simultaneous exposure with the non-steroidal anti-inflammatory drug (NSAID) ibuprofen dampens POLY(I:C)-mediated changes of the iMG phenotype and ameliorates cell proliferation. Remarkably,while POLY(I:C) disrupts neuronal calcium dynamics independent of iMG,ibuprofen rescues this effect only if iMG are present. Mechanistically,ibuprofen targets the enzymes cyclooxygenase 1 and 2 (COX1/PTGS1 and COX2/PTGS2) simultaneously,from which iMG mainly express COX1. Selective COX1 blockage fails to restore the calcium peak amplitude upon POLY(I:C) stimulation,suggesting ibuprofen’s beneficial effect depends on the presence and interplay of COX1 and COX2. These findings underscore the importance of microglia in the context of prenatal immune challenges and provide insight into the mechanisms by which ibuprofen exerts its protective effects during embryonic development.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-025-03366-x.
View Publication
产品类型:
产品号#:
05833
05838
08581
08582
85850
85857
产品名:
STEMdiff™神经前体细胞培养基
STEMdiff™神经祖细胞冻存液
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
mTeSR™1
mTeSR™1
(Oct 2024)
Cell Death & Disease 15 10
Deciphering the impact of PROM1 alternative splicing on human photoreceptor development and maturation
Alternative splicing (AS) is a crucial mechanism contributing to proteomic diversity,which is highly regulated in tissue- and development-specific patterns. Retinal tissue exhibits one of the highest levels of AS. In particular,photoreceptors have a distinctive AS pattern involving the inclusion of microexons not found in other cell types. PROM1 whose encoded protein Prominin-1 is located in photoreceptor outer segments (OSs),undergoes exon 4 inclusion from the 12th post-conception week of human development through adulthood. Exon 4 skipping in PROM1 is associated with late-onset mild maculopathy,however its role in photoreceptor maturation and function is unknown. In this study retinal organoids,a valuable model system,were employed in combination with phosphorodiamidate morpholino oligos (PMOs) to assess the role of exon 4 AS in the development of human retina. Retinal organoids were treated with the PMOs for four weeks after which RT-PCR,western blotting and immunofluorescence analysis were performed to assess exon 4 exclusion and its impact on photoreceptors. The transcriptome of treated ROs was studied by bulk RNA-Seq. Our data demonstrate that 55% skipping of PROM1 exon 4 resulted in decreased Prominin-1 expression by 40%,abnormal accumulation of cones in the basal side of the retinal organoids as well as detectable cone photoreceptor cilium defects. Transcriptomic and western blot analyses revealed decreased expression of cone,inner segment and connecting cilium basal body markers,increased expression of genes associated with stress response and the ubiquitin-proteasome system,and downregulation of autophagy. Importantly,the use of retinal organoids provides a valuable platform to study AS and unravel disease mechanisms in a more physiologically relevant context,opening avenues for further research and potential therapeutic interventions. Together our data indicate that cones may be more sensitive to PROM1 exon 4 skipping and/or reduced Prominin-1 expression,corroborating the pathogenesis of late-onset mild maculopathy.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
Journal of Cell Science 138 9
Mitophagy is induced in human engineered heart tissue after simulated ischemia and reperfusion
ABSTRACTThe paradoxical exacerbation of cellular injury and death during reperfusion remains a problem in the treatment of myocardial infarction. Mitochondrial dysfunction plays a key role in the pathogenesis of myocardial ischemia and reperfusion injury. Dysfunctional mitochondria can be removed by mitophagy,culminating in their degradation within acidic lysosomes. Mitophagy is pivotal in maintaining cardiac homeostasis and emerges as a potential therapeutic target. Here,we employed beating human engineered heart tissue (EHT) to assess mitochondrial dysfunction and mitophagy during ischemia and reperfusion simulation. Our data indicate adverse ultrastructural changes in mitochondrial morphology and impairment of mitochondrial respiration. Furthermore,our pH-sensitive mitophagy reporter EHTs,generated by a CRISPR/Cas9 endogenous knock-in strategy,revealed induced mitophagy flux in EHTs after ischemia and reperfusion simulation. The induced flux required the activity of the protein kinase ULK1,a member of the core autophagy machinery. Our results demonstrate the applicability of the reporter EHTs for mitophagy assessment in a clinically relevant setting. Deciphering mitophagy in the human heart will facilitate development of novel therapeutic strategies. Summary: Mitochondrial dysfunction and lysosomal degradation of mitochondria (mitophagy) is induced after ischemia and reperfusion simulation in human engineered heart tissue,as shown with an endogenous pH-sensitive mitophagy reporter.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
J. A. Perez-Bermejo et al. (Mar 2024)
Nature Communications 15
Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair
Homology Directed Repair (HDR) enables precise genome editing,but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes,such as Non-Homologous End Joining (NHEJ). In this study,we develop a functional,pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target,53BP1,identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing,synergize with a DNAPK inhibitor molecule,and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes. Subject terms: Targeted gene repair,Homologous recombination,High-throughput screening
View Publication