Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia.
The steps to leukemia following an in utero fusion of MLL (HRX,ALL-1) to a partner gene in humans are not known. Introduction of the Mll-AF9 fusion gene into embryonic stem cells results in leukemia in mice with cell-type specificity similar to humans. In this study we used myeloid colony assays,immunophenotyping,and transplantation to evaluate myelopoiesis in Mll-AF9 mice. Colony assays demonstrated that both prenatal and postnatal Mll-AF9 tissues have significantly increased numbers of CD11b(+)/CD117(+)/Gr-1(+/-) myeloid cells,often in compact clusters. The self-renewal capacity of prenatal myeloid progenitors was found to decrease following serial replating of colony-forming cells. In contrast,early postnatal myeloid progenitors increased following replating; however,the enhanced self-renewal of early postnatal myeloid progenitor cells was limited and did not result in long-term cell lines or leukemia in vivo. Unlimited replating,long-term CD11b/Gr-1(+) myeloid cell lines,and the ability to produce early leukemia in vivo in transplantation experiments,were found only in mice with overt leukemia. Prenatal Mll-AF9 tissues had reduced total (mature and progenitor) CD11b/Gr-1(+) cells compared with wild-type tissues. Colony replating,immunophenotyping,and cytochemistry suggest that any perturbation of cellular differentiation from the prenatal stage onward is partial and largely reversible. We describe a novel informative in vitro and in vivo model system that permits study of the stages in the pathogenesis of Mll fusion gene leukemia,beginning in prenatal myeloid cells,progressing to a second stage in the postnatal period and,finally,resulting in overt leukemia in adult animals.
View Publication
产品类型:
产品号#:
03534
产品名:
MethoCult™GF M3534
Matsumura-Takeda K et al. (APR 2007)
Stem cells (Dayton,Ohio) 25 4 862--70
CD41+/CD45+ cells without acetylcholinesterase activity are immature and a major megakaryocytic population in murine bone marrow.
Murine megakaryocytes (MKs) are defined by CD41/CD61 expression and acetylcholinesterase (AChE) activity; however,their stages of differentiation in bone marrow (BM) have not been fully elucidated. In murine lineage-negative (Lin(-))/CD45(+) BM cells,we found CD41(+) MKs without AChE activity (AChE(-)) except for CD41(++) MKs with AChE activity (AChE(+)),in which CD61 expression was similar to their CD41 level. Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs could differentiate into AChE(+),with an accompanying increase in CD41/CD61 during in vitro culture. Both proplatelet formation (PPF) and platelet (PLT) production for Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs were observed later than for Lin(-)/CD41(++)/CD45(+)/AChE(+) MKs,whereas MK progenitors were scarcely detected in both subpopulations. GeneChip and semiquantitative polymerase chain reaction analyses revealed that the Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs are assigned at the stage between the progenitor and PPF preparation phases in respect to the many MK/PLT-specific gene expressions,including beta1-tubulin. In normal mice,the number of Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs was 100 times higher than that of AChE(+) MKs in BM. When MK destruction and consequent thrombocytopenia were caused by an antitumor agent,mitomycin-C,Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs led to an increase in AChE(+) MKs and subsequent PLT recovery with interleukin-11 administration. It was concluded that MKs in murine BM at least in part consist of immature Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs and more differentiated Lin(-)/CD41(++)/CD45(+)/AChE(+) MKs. Immature Lin(-)/CD41(+)/CD45(+)/AChE(-) MKs are a major MK population compared with AChE(+) MKs in BM and play an important role in rapid PLT recovery in vivo.
View Publication
产品类型:
产品号#:
03231
04960
04902
04900
04961
04901
04963
04962
04970
04971
产品名:
MethoCult™M3231
MegaCult™-C胶原蛋白和不含细胞因子的培养基
胶原蛋白溶液
MegaCult™-C培养基无细胞因子
MegaCult™-C胶原蛋白和细胞因子培养基
MegaCult™-C细胞因子培养基
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
MegaCult™-C不含细胞因子完整试剂盒
MegaCult™-C细胞因子完整试剂盒
Drake LY et al. (JUL 2016)
Journal of immunology (Baltimore,Md. : 1950)
Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice.
Innate lymphoid cells (ILCs) are a new family of immune cells that play important roles in innate immunity in mucosal tissues,and in the maintenance of tissue and metabolic homeostasis. Recently,group 2 ILCs (ILC2s) were found to promote the development and effector functions of Th2-type CD4(+) T cells by interacting directly with T cells or by activating dendritic cells,suggesting a role for ILC2s in regulating adaptive immunity. However,our current knowledge on the role of ILCs in humoral immunity is limited. In this study,we found that ILC2s isolated from the lungs of naive BALB/c mice enhanced the proliferation of B1- as well as B2-type B cells and promoted the production of IgM,IgG1,IgA,and IgE by these cells in vitro. Soluble factors secreted by ILC2s were sufficient to enhance B cell Ig production. By using blocking Abs and ILC2s isolated from IL-5-deficient mice,we found that ILC2-derived IL-5 is critically involved in the enhanced production of IgM. Furthermore,when adoptively transferred to Il7r(-/-) mice,which lack ILC2s and mature T cells,lung ILC2s promoted the production of IgM Abs to a polysaccharide Ag,4-hydroxy-3-nitrophenylacetyl Ficoll,within 7 d of airway exposure in vivo. These findings add to the growing body of literature regarding the regulatory functions of ILCs in adaptive immunity,and suggest that lung ILC2s promote B cell production of early Abs to a respiratory Ag even in the absence of T cells.
View Publication
产品类型:
产品号#:
19754
19754RF
18554
18554RF
18564
18564RF
产品名:
Shah SN et al. (DEC 2016)
PloS one 11 12 e0166657
Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.
Reliance on volunteer blood donors can lead to transfusion product shortages,and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time,known as 'the storage lesion'. Thus,there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh,transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However,it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity,viability,deformability,and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo,we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel,chronically anemic,SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data,stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs,the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.
View Publication
产品类型:
产品号#:
70008
70008.1
70008.2
70008.3
70008.4
70008.5
70008.6
200-0000
200-0001
200-0002
产品名:
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
冻存的人脐带血CD34+细胞
Zhou S et al. ( 2017)
PloS one 12 1 e0169899
Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment.
The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner,mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However,the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover,we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects,and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells,inducing a dose-dependent increase in SOX2,OCT4 and Nanog proteins,leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.
View Publication
Y.-H. Chang et al. ( 2017)
Immunity 47 5 943--958.e9
Dichotomous Expression of TNF Superfamily Ligands on Antigen-Presenting Cells Controls Post-priming Anti-viral CD4+ T Cell Immunity.
T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome,but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL,4-1BBL,OX40L,and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40,CD25,and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation,revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.
View Publication
Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient.
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts,perceptions,and emotions,usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however,most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells,derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient,presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS),when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia,contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Amps K et al. (DEC 2011)
Nature biotechnology 29 12 1132--44
Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage.
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines,from 38 laboratories worldwide,for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal,but there was a progressive tendency to acquire changes on prolonged culture,commonly affecting chromosomes 1,12,17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants,determined from the SNP arrays,also appeared sporadically. No common variants related to culture were observed on chromosomes 1,12 and 17,but a minimal amplicon in chromosome 20q11.21,including three genes expressed in human ES cells,ID1,BCL2L1 and HM13,occurred in textgreater20% of the lines. Of these genes,BCL2L1 is a strong candidate for driving culture adaptation of ES cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
77003
77004
200-0117
产品名:
mTeSR™1
mTeSR™1
CellAdhere™ Laminin-521
CellAdhere™ Laminin-521
Zhao Z et al. (JAN 2012)
PLoS ONE 7 3 e33953
Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan,a 61-amino acid vasodilatory peptide,specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells,little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study,we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1,we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC,the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells,as demonstrated by WST-8 analysis,annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly,immunofluorescence,western blot analysis,real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover,karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary,these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Ku M et al. ( 2012)
Genome biology 13 10 R85
H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions.
BACKGROUND: The histone variant H2A.Z has been implicated in nucleosome exchange,transcriptional activation and Polycomb repression. However,the relationships among these seemingly disparate functions remain obscure.backslashnbackslashnRESULTS: We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers,and correlates strongly with H3K4 methylation. Accordingly,H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation,but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z,including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin.backslashnbackslashnCONCLUSIONS: Our findings associate H2A.Z with functionally distinct genomic elements,and suggest that post-translational modifications may reconcile its contrasting locations and roles.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
MacLean Ga et al. (OCT 2012)
Proceedings of the National Academy of Sciences 109 43 17567--17572
Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver,a preleukemic condition termed transient myeloproliferative disorder,and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins,human embryonic stem (hES),and induced pluripotent stem (iPS) cells,were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation,we isolated disomic and trisomic subclones from the same parental iPS line,thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like,γ-globin expressing,definitive hematopoiesis,we found that trisomic cells of hES,iPS,or isogenic origins exhibited a two- to fivefold increase in a population of CD43(+)(Leukosialin)/CD235(+)(Glycophorin A) hematopoietic cells,accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage.
View Publication