Pessina A et al. (FEB 2009)
Toxicology in vitro : an international journal published in association with BIBRA 23 1 194--200
Application of human CFU-Mk assay to predict potential thrombocytotoxicity of drugs.
Megakaryocytopoiesis gives rise to platelets by proliferation and differentiation of lineage-specific progenitors,identified in vitro as Colony Forming Unit-Megakaryocytes (CFU-Mk). The aim of this study was to refine and optimize the in vitro Standard Operating Procedure (SOP) of the CFU-Mk assay for detecting drug-induced thrombocytopenia and to prevalidate a model for predicting the acute exposure levels that cause maximum tolerated decreases in the platelets count,based on the correlation with the maximal plasma concentrations (C max) in vivo. The assay was linear under the SOP conditions,and the in vitro endpoints (percentage of colonies growing) were reproducible within and across laboratories. The protocol performance phase was carried out testing 10 drugs (selected on the base of their recognised or potential in vivo haematotoxicity,according to the literature). Results showed that a relationship can be established between the maximal concentration in plasma (C max) and the in vitro concentrations that inhibited the 10-50-90 percent of colonies growth (ICs). When C max is lower than IC10,it is possible to predict that the chemicals have no direct toxicity effect on CFU-Mk and could not induce thrombocytopenia due to bone marrow damage. When the C max is higher than IC90 and/or IC50,thrombocytopenia can occur due to direct toxicity of chemicals on CFU-Mk progenitors.
View Publication
产品类型:
产品号#:
04960
04902
04900
04963
04962
04970
产品名:
MegaCult™-C胶原蛋白和不含细胞因子的培养基
胶原蛋白溶液
MegaCult™-C培养基无细胞因子
双室载玻片试剂盒
MegaCult™-C cfu染色试剂盒
MegaCult™-C不含细胞因子完整试剂盒
Critchley-Thorne RJ et al. (JUN 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 22 9010--5
Impaired interferon signaling is a common immune defect in human cancer.
Immune dysfunction develops in patients with many cancer types and may contribute to tumor progression and failure of immunotherapy. Mechanisms underlying cancer-associated immune dysfunction are not fully understood. Efficient IFN signaling is critical to lymphocyte function; animals rendered deficient in IFN signaling develop cancer at higher rates. We hypothesized that altered IFN signaling may be a key mechanism of immune dysfunction common to cancer. To address this,we assessed the functional responses to IFN in peripheral blood lymphocytes from patients with 3 major cancers: breast cancer,melanoma,and gastrointestinal cancer. Type-I IFN (IFN-alpha)-induced signaling was reduced in T cells and B cells from all 3 cancer-patient groups compared to healthy controls. Type-II IFN (IFN-gamma)-induced signaling was reduced in B cells from all 3 cancer patient groups,but not in T cells or natural killer cells. Impaired-IFN signaling was equally evident in stage II,III,and IV breast cancer patients,and downstream functional defects in T cell activation were identified. Taken together,these findings indicate that defects in lymphocyte IFN signaling arise in patients with breast cancer,melanoma,and gastrointestinal cancer,and these defects may represent a common cancer-associated mechanism of immune dysfunction.
View Publication
产品类型:
产品号#:
15624
15664
15628
15668
产品名:
RosetteSep™ 人粒细胞去除抗体混合物
RosetteSep™人粒细胞去除抗体混合物
RosetteSep™ 人单核细胞去除抗体混合物
RosetteSep™人单核细胞去除抗体混合物
Beierle EA et al. ( 2010)
Cell cycle (Georgetown,Tex.) 9 5 1005--1015
Inhibition of focal adhesion kinase decreases tumor growth in human neuroblastoma.
Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that regulates both cellular adhesion and apoptosis. FAK is overexpressed in a number of human tumors including neuroblastoma. Previously,we have shown that the MYCN oncogene,the primary adverse prognostic indicator in neuroblastoma,regulates the expression of FAK in neuroblastoma. In this study,we have examined the effects of FAK inhibition upon neuroblastoma using a small molecule [1,2,4,5-benzenetetraamine tetrahydrochloride (Y15)] to inhibit FAK expression and the phosphorylation of FAK at the Y397 site. Utilizing both non-isogenic and isogenic MYCN(+)/MYCN(-) neuroblastoma cell lines,we found that Y15 effectively diminished phosphorylation of the Y397 site of FAK. Treatment with Y15 resulted in increased detachment,decreased cell viability and increased apoptosis in the neuroblastoma cell lines. We also found that the cell lines with higher MYCN are more sensitive to Y15 treatment than their MYCN negative counterparts. In addition,we have shown that treatment with Y15 in vivo leads to less tumor growth in nude mouse xenograft models,again with the greatest effects seen in MYCN(+) tumor xenografts. The results of the current study suggest that FAK and phosphorylation at the Y397 site plays a role in neuroblastoma cell survival,and that the FAK Y397 phosphorylation site is a potential therapeutic target for this childhood tumor.
View Publication
产品类型:
产品号#:
73132
73134
产品名:
Lin G and Xu R-H (SEP 2010)
Current stem cell research & therapy 5 3 207--14
Progresses and challenges in optimization of human pluripotent stem cell culture.
The pressing demand to elucidate the biology of human embryonic stem (ES) cells and to realize their therapeutic potential has greatly promoted the progresses in the optimization of the culture systems used for this highly promising cell type. These progresses include the characterization of exogenous regulators of pluripotency and differentiation,the development of animal-free,defined,and scalable culture systems,and some pioneering efforts to establish good manufactory practice facilities to derive and expand clinical-grade human ES cells and their derivatives. All of these advancements appear to be also applicable to the derivation and culture of human induced pluripotent stem cells,an ES cell-like cell type derived from somatic cells via reprogramming. This review attempts to summarize these progresses and discuss some of the remaining challenges.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Xie Y et al. (NOV 2014)
Stem Cell Reports 3 5 743--757
Defining the role of oxygen tension in human neural progenitor fate
Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2??-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined,these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here,we show that low O2 tension and hypoxiainducible factor (HIF) activity instead promote appropriate hESC differentiation. Through gain- and loss-of-function studies,we implicate O2 tension as a modifier of a key cell fate decision,namely whether neural progenitors differentiate toward neurons or glia. Furthermore,our data show that even transient changes in O2 concentration can affect cell fate through HIF by regulating the activity of MYC,a regulator of LIN28/let-7 that is critical for fate decisions in the neural lineage.We also identify key small molecules that can take advantage of this pathway to quickly and efficiently promote the development of mature cell types.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Gren ST et al. ( 2015)
PloS one 10 12 e0144351
A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets.
Human monocytes are a heterogeneous cell population classified into three different subsets: Classical CD14++CD16-,intermediate CD14++CD16+,and non-classical CD14+CD16++ monocytes. These subsets are distinguished by their differential expression of CD14 and CD16,and unique gene expression profile. So far,the variation in inter-cellular gene expression within the monocyte subsets is largely unknown. In this study,the cellular variation within each human monocyte subset from a single healthy donor was described by using a novel single-cell PCR gene-expression analysis tool. We investigated 86 different genes mainly encoding cell surface markers,and proteins involved in immune regulation. Within the three human monocyte subsets,our descriptive findings show multimodal expression of key immune response genes,such as CD40,NFⱪB1,RELA,TLR4,TLR8 and TLR9. Furthermore,we discovered one subgroup of cells within the classical monocytes,which showed alterations of 22 genes e.g. IRF8,CD40,CSF1R,NFⱪB1,RELA and TNF. Additionally one subgroup within the intermediate and non-classical monocytes also displayed distinct gene signatures by altered expression of 8 and 6 genes,respectively. Hence the three monocyte subsets can be further subdivided according to activation status and differentiation,independently of the traditional classification based on cell surface markers. Demonstrating the use and the ability to discover cell heterogeneity within defined populations of human monocytes is of great importance,and can be useful in unravelling inter-cellular variation in leukocyte populations,identifying subpopulations involved in disease pathogenesis and help tailor new therapies.
View Publication
Development of a primary human co-culture model of inflamed airway mucosa
Neutrophil breach of the mucosal surface is a common pathological consequence of infection. We present an advanced co-culture model to explore neutrophil transepithelial migration utilizing airway mucosal barriers differentiated from primary human airway basal cells and examined by advanced imaging. Human airway basal cells were differentiated and cultured at air-liquid interface (ALI) on the underside of 3 μm pore-sized transwells,compatible with the study of transmigrating neutrophils. Inverted ALIs exhibit beating cilia and mucus production,consistent with conventional ALIs,as visualized by micro-optical coherence tomography (μOCT). μOCT is a recently developed imaging modality with the capacity for real time two- A nd three-dimensional analysis of cellular events in marked detail,including neutrophil transmigratory dynamics. Further,the newly devised and imaged primary co-culture model recapitulates key molecular mechanisms that underlie bacteria-induced neutrophil transepithelial migration previously characterized using cell line-based models. Neutrophils respond to imposed chemotactic gradients,and migrate in response to Pseudomonas aeruginosa infection of primary ALI barriers through a hepoxilin A3-directed mechanism. This primary cell-based co-culture system combined with μOCT imaging offers significant opportunity to probe,in great detail,micro-anatomical and mechanistic features of bacteria-induced neutrophil transepithelial migration and other important immunological and physiological processes at the mucosal surface.
View Publication
产品类型:
产品号#:
05001
05021
05022
产品名:
PneumaCult™-ALI 培养基
PneumaCult™-ALI 培养基含12 mm Transwell®插件
PneumaCult™-ALI 培养基含6.5 mm Transwell®插件
Douvaras P et al. ( 2016)
International Journal of Molecular Sciences 17 4
Epigenetic modulation of human induced pluripotent stem cell differentiation to oligodendrocytes
Pluripotent stem cells provide an invaluable tool for generating human,disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system,characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells,and their membranes ensheath axons,providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies,where the establishment of repressive epigenetic marks on histone proteins,followed by activation of myelin genes,leads to lineage progression. To assess whether this epigenetic regulation is conserved across species,we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation,and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells,differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks,including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Musah S et al. (NOV 2012)
ACS Nano 6 11 10168--10177
Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal
Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata,but their complexity obscures a molecular level analysis of their relevant attributes. Because the properties of hydrogels can be tuned and altered systematically,these materials can reveal the impact of substratum features on cell fate decisions. By tailoring the peptide displayed to cells and the substrate mechanical properties,a hydrogel was generated that binds hES cell surface glycosaminoglycans (GAGs) and functions robustly in a defined culture medium to support long-term hES cell self-renewal. A key attribute of the successful GAG-binding hydrogels is their stiffness. Only stiff substrates maintain hES cell proliferation and pluripotency. These findings indicate that cells can respond to mechanical information transmitted via GAG engagement. Additionally,we found that the stiff matrices afforded activation of the paralogous proteins YAP/TAZ,which are transcriptional coactivators implicated in mechanosensing and hES cell pluripotency. These results indicate that the substratum mechanics can be tuned to activate specific pathways linked to pluripotency. Because several different hES and induced pluripotent stem cell lines respond similarly,we conclude that stiff substrata are more effective for the long-term propagation of human pluripotent stem cells.
View Publication
Uncovering plaque-glia niches in human Alzheimer’s disease brains using spatial transcriptomics
BackgroundAmyloid-beta (A?) plaques and their associated glial responses are hallmark features of Alzheimer’s disease (AD),yet their interactions within the human brain remain poorly defined.MethodsWe applied spatial transcriptomics (ST) and immunohistochemistry (IHC) to 78 postmortem brain sections from 21 individuals in the Religious Orders Study and Memory and Aging Project (ROSMAP). We paired ST with histological data and stratified spots into major categories of plaque-glia niches based on A?,GFAP,and IBA1 intensity. Leveraging published ROSMAP single-nucleus RNA-seq data,we examined differences in gene expression,cellular composition,and intercellular communication across these niches. Neuronal and glial changes were validated by IHC and quantitative analyses. We further characterized glial responses using gene set enrichment analysis (GSEA) with known mouse glial signatures and human AD-associated microglial states. Finally,we used iPSC-derived multicellular cultures and single-cell RNA sequencing (scRNA-seq) to identify cell types that,upon short-term A? exposure,recapitulate the glial responses observed in the human spatial data.ResultsLow-A? regions,enriched for diffuse plaques,exhibited transcriptomic profiles consistent with greater neuronal loss than high-A? regions. High-glia regions showed increased expression of inflammatory and neurodegenerative pathways. Spatial glial responses aligned with established gene modules,including plaque-induced genes (PIGs),oligodendrocyte (OLIG) responses,disease-associated microglia (DAM),disease-associated astrocytes (DAA),and human AD-associated microglial states,indicating that diverse glial phenotypes emerge around plaques and shape the local immune environment. IHC confirmed elevated neuronal apoptosis near low-A? plaques and greater CD68 abundance and synaptic loss near glia-high plaques. In vitro,iPSC-derived microglia—but not astrocytes—exposed to A? displayed transcriptomic changes that closely mirrored the glial states identified in our ST dataset.ConclusionsOur study provides a comprehensive spatial transcriptomic dataset from human AD brain tissue and bridges spatial gene expression with traditional neuropathology. By integrating ST,snRNA-seq,and human multicellular models,we map cellular states and molecular events within plaque-glia niches. This work offers a spatially resolved framework for dissecting plaque-glia interactions and reveals new insights into the cellular and molecular heterogeneity underlying neurodegenerative pathology.Supplementary InformationThe online version contains supplementary material available at 10.1186/s44477-025-00002-z.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
(Sep 2024)
Biofabrication 16 4
Endothelial extracellular vesicles enhance vascular self-assembly in engineered human cardiac tissues
AbstractThe fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here,we implemented a 3D model of cardiac vasculogenesis,incorporating endothelial cells (EC),stromal cells,and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues,resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis,including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs,the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast,supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly,enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization,illustrating the use of this approach in the engineering of enhanced,perfusable,microfluidic models of the myocardium.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
R. M. Walsh et al. (Apr 2024)
Cell reports 43 4
Generation of human cerebral organoids with a structured outer subventricular zone
Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF),which is not expressed in guided cortical organoids,we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP,LIFR,and HOPX,closely matching human fetal oRG. Finally,incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.
View Publication