Clanchy FIL and Hamilton JA (JUL 2012)
Cytokine 59 1 31--4
HUVEC co-culture and haematopoietic growth factors modulate human proliferative monocyte activity.
Monocytes and macrophages are often claimed to have limited potential for proliferation in vivo and in vitro although a human monocyte subset with increased potential to proliferate in culture,termed the proliferative monocyte (PM),has previously been identified. The response of the putatively less mature PM to conditions conducive to haematopoietic stem cell culture was determined. Co-culture of monocytes on a HUVEC monolayer induced up to four cell divisions in a 9 day period. The PM response to haematopoietic growth factors (Flt3L,SCF,IL-6,IL-3 and M-CSF) was determined. M-CSF induced the greatest proliferative response in PM; IL-3 and Flt3L reduced basal and M-CSF-induced proliferation. The inhibition of M-CSFR kinase activity by GW2580 indicated that the ligand(s) for this receptor was a potent inducer of proliferation of this subset; inhibitors of intracellular signalling pathways also reduced PM proliferation.
View Publication
产品类型:
产品号#:
72472
72474
产品名:
GW2580
GW2580
A. J. Hoogendijk et al. (nov 2019)
Cell reports 29 8 2505--2519.e4
Dynamic Transcriptome-Proteome Correlation Networks Reveal Human Myeloid Differentiation and Neutrophil-Specific Programming.
Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data,we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development,which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.
View Publication
产品类型:
产品号#:
06005
产品名:
IntestiCult™ 肠道类器官生长培养基 (小鼠)
(Jul 2025)
Bio-protocol 15 13
Derivation and Culture of Enriched Phrenic-Like Motor Neurons From Human iPSCs
The fatal motor neuron (MN) disease amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of the phrenic MNs (phMNs) controlling the activity of the diaphragm,leading to death by respiratory failure. Human experimental models to study phMNs are lacking,hindering the understanding of the mechanisms of phMN degeneration in ALS. Here,we describe a protocol to derive phrenic-like MNs from human induced pluripotent stem cells (hiPSC-phMNs) within 30 days. During spinal cord development,phMNs emerge from specific MN progenitors located in the dorsalmost MN progenitor (pMN) domain at cervical levels,under the control of a ventral-to-dorsal gradient of Sonic hedgehog (SHH) signaling and a rostro-caudal gradient of retinoic acid (RA). The method presented here uses optimized concentrations of RA and the SHH agonist purmorphamine,followed by fluorescence-activated cell sorting (FACS) of the resulting MN progenitor cells (MNPCs) based on a cell-surface protein (IGDCC3) enriched in hiPSC-phMNs. The resulting cultures are highly enriched in MNs expressing typical phMN markers. This protocol enables the generation of hiPSC-phMNs and is highly reproducible using several hiPSC lines,offering a disease-relevant system to study mechanisms of respiratory MN dysfunction. While the protocol has been validated in the context of ALS research,it can be adopted to study human phrenic MNs in other research fields where these neurons are of interest.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(Mar 2025)
Molecular Brain 18 3
Klotho overexpression protects human cortical neurons from ?-amyloid induced neuronal toxicity
Klotho,a well-known aging suppressor protein,has been implicated in neuroprotection and the regulation of neuronal senescence. While previous studies have demonstrated its anti-aging properties in human brain organoids,its potential to mitigate neurodegenerative processes triggered by ?-amyloid remains underexplored. In this study,we utilised human induced pluripotent stem cells (iPSCs) engineered with a doxycycline-inducible system to overexpress KLOTHO and generated 2D cortical neuron cultures from these cells. These neurons were next exposed to pre-aggregated ?-amyloid 1–42 oligomers to model the neurotoxicity associated with Alzheimer’s disease. Our data reveal that upregulation of KLOTHO significantly reduced ?-amyloid-induced neuronal degeneration and apoptosis,as evidenced by decreased cleaved caspase-3 expression and preservation of axonal integrity. Additionally,KLOTHO overexpression prevented the loss of dendritic branching and mitigated reductions in axonal diameter,hallmark features of neurodegenerative pathology. These results highlight Klotho’s protective role against ?-amyloid-induced neurotoxicity in human cortical neurons and suggest that its age-related decline may contribute to neurodegenerative diseases such as Alzheimer’s disease. Our findings underscore the therapeutic potential of Klotho-based interventions in mitigating age-associated neurodegenerative processes.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13041-025-01199-6.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Apr 2024)
Biomedical Optics Express 15 5
Deep learning based characterization of human organoids using optical coherence tomography
Organoids,derived from human induced pluripotent stem cells (hiPSCs),are intricate three-dimensional in vitro structures that mimic many key aspects of the complex morphology and functions of in vivo organs such as the retina and heart. Traditional histological methods,while crucial,often fall short in analyzing these dynamic structures due to their inherently static and destructive nature. In this study,we leveraged the capabilities of optical coherence tomography (OCT) for rapid,non-invasive imaging of both retinal,cerebral,and cardiac organoids. Complementing this,we developed a sophisticated deep learning approach to automatically segment the organoid tissues and their internal structures,such as hollows and chambers. Utilizing this advanced imaging and analysis platform,we quantitatively assessed critical parameters,including size,area,volume,and cardiac beating,offering a comprehensive live characterization and classification of the organoids. These findings provide profound insights into the differentiation and developmental processes of organoids,positioning quantitative OCT imaging as a potentially transformative tool for future organoid research.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
Mao Y et al. (APR 1999)
Chemistry & biology 6 4 251--263
Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564.
BACKGROUND: The mitomycins are natural products that contain a variety of functional groups,including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent,and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA),D-glucosamine,L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS: A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not,however,linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system,which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS: The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system,as well efforts to engineer the biosynthesis of novel natural products.
View Publication
产品类型:
产品号#:
73272
73274
100-1048
产品名:
丝裂霉素C
丝裂霉素C
Gilmartin AG et al. ( 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 5 989--1000
GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition.
PURPOSE: Despite their preclinical promise,previous MEK inhibitors have shown little benefit for patients. This likely reflects the narrow therapeutic window for MEK inhibitors due to the essential role of the P42/44 MAPK pathway in many nontumor tissues. GSK1120212 is a potent and selective allosteric inhibitor of the MEK1 and MEK2 (MEK1/2) enzymes with promising antitumor activity in a phase I clinical trial (ASCO 2010). Our studies characterize GSK1120212' enzymatic,cellular,and in vivo activities,describing its unusually long circulating half-life. EXPERIMENTAL DESIGN: Enzymatic studies were conducted to determine GSK1120212 inhibition of recombinant MEK,following or preceding RAF kinase activation. Cellular studies examined GSK1120212 inhibition of ERK1 and 2 phosphorylation (p-ERK1/2) as well as MEK1/2 phosphorylation and activation. Further studies explored the sensitivity of cancer cell lines,and drug pharmacokinetics and efficacy in multiple tumor xenograft models. RESULTS: In enzymatic and cellular studies,GSK1120212 inhibits MEK1/2 kinase activity and prevents Raf-dependent MEK phosphorylation (S217 for MEK1),producing prolonged p-ERK1/2 inhibition. Potent cell growth inhibition was evident in most tumor lines with mutant BRAF or Ras. In xenografted tumor models,GSK1120212 orally dosed once daily had a long circulating half-life and sustained suppression of p-ERK1/2 for more than 24 hours; GSK1120212 also reduced tumor Ki67,increased p27(Kip1/CDKN1B),and caused tumor growth inhibition in multiple tumor models. The largest antitumor effect was among tumors harboring mutant BRAF or Ras. CONCLUSIONS: GSK1120212 combines high potency,selectivity,and long circulating half-life,offering promise for successfully targeting the narrow therapeutic window anticipated for clinical MEK inhibitors.
View Publication
产品类型:
产品号#:
73502
73504
产品名:
Jin Q et al. (SEP 2011)
Virology 417 2 449--56
Role for the conserved N-terminal cysteines in the anti-chemokine activities by the chemokine-like protein MC148R1 encoded by Molluscum contagiosum virus.
Molluscum contagiosum poxvirus (MCV) type 1 and type 2 encode two chemokine-like proteins MC148R1 and MC148R2. It is believed that MC148R proteins function by blocking the inflammatory response. However,the mechanism of the proposed biological activities of MC148R proteins and the role of the additional C-terminal cysteines that do not exist in other chemokines are not understood. Here,we demonstrated in two different assay systems that His-tagged MC148R1 displaces the interaction between CXCL12α and CXCR4. The N-terminal cysteines but not the additional C-terminal cysteines modulate this displacement. His-tagged MC148R1 blocked both CXCL12α-mediated and MIP-1α-mediated chemotaxis. In contrast,MC148R2 blocked MIP-1α-mediated but not CXCL12α-mediated chemotaxis. Immunoprecipitation by antibodies to MC148R1 or CXCL12α followed by immunoblotting and detection by antibodies to the other protein demonstrated physical interaction of His-tagged CXCL12α and His-tagged MC148R1. Interaction with chemokines might mask the receptor interaction site resulting in decreased binding and impairment of the biological activities.
View Publication
产品类型:
产品号#:
70025
70025.1
70025.2
70025.3
70047
70047.1
70047.2
70048
70048.1
70048.2
产品名:
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
冻存的人外周血单个核细胞
Booth L et al. (AUG 2015)
Journal of cellular physiology 230 8 1982--98
OSU-03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood-Brain Barrier: Implications for Anti-Cancer Therapies.
We examined the interaction between OSU-03012 (also called AR-12) with phosphodiesterase 5 (PDE5) inhibitors to determine the role of the chaperone glucose-regulated protein (GRP78)/BiP/HSPA5 in the cellular response. Sildenafil (Viagra) interacted in a greater than additive fashion with OSU-03012 to kill stem-like GBM cells. Treatment of cells with OSU-03012/sildenafil: abolished the expression of multiple oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused a rapid degradation of GRP78 and other HSP70 and HSP90 family chaperone proteins. Decreased expression of plasma membrane receptors and drug efflux pumps was dependent upon enhanced PERK-eIF2α-ATF4-CHOP signaling and was blocked by GRP78 over-expression. In vivo OSU-03012/sildenafil was more efficacious than treatment with celecoxib and sildenafil at killing tumor cells without damaging normal tissues and in parallel reduced expression of ABCB1 and ABCG2 in the normal brain. The combination of OSU-03012/sildenafil synergized with low concentrations of sorafenib to kill tumor cells,and with lapatinib to kill ERBB1 over-expressing tumor cells. In multiplex assays on plasma and human tumor tissue from an OSU-03012/sildenafil treated mouse,we noted a profound reduction in uPA signaling and identified FGF and JAK1/2 as response biomarkers for potentially suppressing the killing response. Inhibition of FGFR signaling and to a lesser extent JAK1/2 signaling profoundly enhanced OSU-03012/sildenafil lethality.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
Mitchell WB et al. (MAY 2007)
Blood 109 9 3725--32
Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation.
Current evidence supports a model in which the low-affinity state of the platelet integrin alphaIIbbeta3 results from alphaIIbbeta3 adopting a bent conformation. To assess alphaIIbbeta3 biogenesis and how alphaIIbbeta3 initially adopts the bent conformation,we mapped the conformational states occupied by alphaIIb and beta3 during biogenesis using conformation-specific monoclonal antibodies (mAbs). We found that alphaIIbbeta3 complex formation was not limited by the availability of either free pro-alphaIIb or free beta3,suggesting that other molecules,perhaps chaperones,control complex formation. Five beta3-specific,ligand-induced binding site (LIBS) mAbs reacted with much or all free beta3 but not with beta3 when in complex with mature alphaIIb,suggesting that beta3 adopts its mature conformation only after complex formation. Conversely,2 alphaIIb-specific LIBS mAbs directed against the alphaIIb Calf-2 region adjacent to the membrane reacted with only minor fractions of free pro-alphaIIb,raising the possibility that pro-alphaIIb adopts a bent conformation early in biogenesis. Our data suggest a working model in which pro-alphaIIb adopts a bent conformation soon after synthesis,and then beta3 assumes its bent conformation by virtue of its interaction with the bent pro-alphaIIb.
View Publication
产品类型:
产品号#:
15026
15066
产品名:
RosetteSep™ 人造血祖细胞富集抗体混合物
RosetteSep™人造血祖细胞富集抗体混合物
Serrero G and Lepak NM (APR 1997)
Biochemical and biophysical research communications 233 1 200--2
Prostaglandin F2alpha receptor (FP receptor) agonists are potent adipose differentiation inhibitors for primary culture of adipocyte precursors in defined medium.
Prostaglandin F2alpha inhibits adipose differentiation of primary culture of adipocyte precursors and of the adipogenic cell line 1246 in defined medium. In the present paper,we investigated the effect of FP receptor agonists cloprostenol and fluprostenol on the differentiation of newborn rat adipocyte precursors in primary culture. The results show that cloprostenol and fluprostenol are very potent inhibitors of adipose differentiation. Dose response studies indicate that both agonists are more potent than PGF2alpha in inhibiting adipocyte precursors differentiation. 50% inhibition of adipose differentiation was observed at a concentration of 3 x 10(-12) M for cloprostenol and 3 to 10 x 10(-11) M for fluprostenol respectively whereas the PGF2alpha concentration required to elicit the same effect was 10(-8) M. In contrast compounds structurally related to PGE2 such as 17-phenyl trinor PGE2 had no effect on adipose differentiation except when added at a 10,000-fold higher concentration.
View Publication