Cheng LS et al. (OCT 2015)
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 27 10 1509--14
Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease.
BACKGROUND Transplantation of enteric neural stem cells (ENSC) holds promise as a potential therapy for enteric neuropathies,including Hirschsprung disease. Delivery of transplantable cells via laparotomy has been described,but we propose a novel,minimally invasive endoscopic method of cell delivery. METHODS Enteric neural stem cells for transplantation were cultured from dissociated gut of postnatal donor mice. Twelve recipient mice,including Ednrb(-/-) mice with distal colonic aganglionosis,underwent colonoscopic injection of ENSC under direct vision using a 30-gauge Hamilton needle passed through a rigid cystoureteroscope. Cell engraftment,survival,and neuroglial differentiation were studied 1-4 weeks after the procedure. KEY RESULTS All recipient mice tolerated the procedure without complications and survived to sacrifice. Transplanted cells were found within the colonic wall in 9 of 12 recipient mice with differentiation into enteric neurons and glia. CONCLUSIONS & INFERENCES Endoscopic injection of ENSC is a safe and reliable method for cell delivery,and can be used to deliver a large number of cells to a specific area of disease. This minimally invasive endoscopic approach may prove beneficial to future human applications of cell therapy for neurointestinal disease.
View Publication
Liu F-C et al. (JUN 2009)
Thrombosis research 124 2 199--207
Splitomicin suppresses human platelet aggregation via inhibition of cyclic AMP phosphodiesterase and intracellular Ca++ release.
Splitomicin is derived from beta-naphthol and is an inhibitor of Silent Information Regulator 2 (SIR2). Its naphthoic moiety might be responsible for its inhibitory effects on platelets. The major goal of our study was to examine possible mechanisms of action of splitomicin on platelet aggregation in order to promote development of a novel anti-platelet aggregation therapy for cardiovascular and cerebrovascular diseases. To study the inhibitory effects of splitomicin on platelet aggregation,we used washed human platelets,and monitored platelet aggregation and ATP release induced by thrombin (0.1 U/ml),collagen (2 microg/ml),arachidonic acid (AA) (0.5 mM),U46619 (2 microM) or ADP (10 microM). Splitomicin inhibited platelet aggregation induced by thrombin,collagen,AA and U46619 with a concentration dependent manner. Splitomicin increased cAMP and this effect was enhanced when splitomicin (150 microM) was combined with PGE1 (0.5 microM). It did not further increase cAMP when combined with IBMX. This data indicated that splitomicin increases cAMP by inhibiting activity of phosphodiestease. In addition,splitomicin (300 microM) attenuated intracellular Ca(++) mobilization,and production of thromboxane B2 (TXB2) in platelets that was induced by thrombin,collagen,AA or U46619. The inhibitory mechanism of splitomicin on platelet aggregation may increase cyclic AMP levels via inhibition of cyclic AMP phosphodiesterase activity and subsequent inhibition of intracellular Ca(++) mobilization,TXB2 formation and ATP release.
View Publication
产品类型:
产品号#:
产品名:
文献
Masaki H et al. (NOV 2008)
Stem Cell Research 1 2 105--115
Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture
Induction of pluripotent stem cells from human fibroblasts has been achieved by the ectopic expression of two different sets of four genes. However,the mechanism of the pluripotent stem cell induction has not been elucidated. Here we identified a marked heterogeneity in colonies generated by the four-gene (Oct3/4,Sox2,c-Myc,and Klf4) transduction method in human neonatal skin-derived cells. The four-gene transduction gave a higher probability of induction for archetypal pluripotent stem cell marker genes (Nanog,TDGF,and Dnmt3b) than for marker genes that are less specific for pluripotent stem cells (CYP26A1 and TERT) in primary induction culture. This tendency may reflect the molecular mechanism underlying the induction of human skin-derived cells into pluripotent stem cells. Among the colonies induced by the four-gene transduction,small cells with a high nucleus-to-cytoplasm ratio could be established by repeated cloning. Subsequently established cell lines were similar to human embryonic stem cells as well as human induced pluripotent stem (iPS) cells derived from adult tissue in morphology,gene expression,long-term self-renewal ability,and teratoma formation. Genome-wide single-nucleotide polymorphism array analysis of the human iPS cell line indicates that the induction process did not induce DNA mutation. ?? 2008 Elsevier B.V. All rights reserved.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Ranga U et al. (MAR 2004)
Journal of virology 78 5 2586--90
Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine.
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain,and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions,we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these,cysteine (at position 31) was highly (textgreater99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions,in contrast,the SC mutant was defective in both. Therefore,the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence,this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™ 人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
文献
Balakrishnan SK et al. (AUG 2012)
PLoS ONE 7 8 e42424
Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.
The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting,X-chromosome inactivation and genomic architecture. In this study,we examined the role of CTCF in human embryonic stem cell (hESC) biology. We demonstrate that CTCF associates with several important pluripotency genes,including NANOG,SOX2,cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation,but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs,CTCF exists in multisubunit protein complexes and can be poly(ADP)ribosylated. Known CTCF cofactors,such as Cohesin,differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly,the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Almeida S et al. (SEP 2013)
Acta Neuropathologica 126 3 385--399
Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons
The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had textgreater1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization,two iPSC lines from each subject were selected,differentiated into postmitotic neurons,and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs,iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover,repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Titmarsh DM et al. ( 2016)
Scientific reports 6 April 24637
Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays.
Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways,however,it remains unclear as to what extent these pathways can be exploited,either individually or in combination,in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro,but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways,we developed a high-density microbioreactor array (HDMA) - a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt,Hedgehog,IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation,inducing cell cycle activity marked by Ki67,and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
A. Leonard et al. (MAY 2018)
Journal of molecular and cellular cardiology 118 147--158
Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) grown in engineered heart tissue (EHT) can be used for drug screening,disease modeling,and heart repair. However,the immaturity of hiPSC-CMs currently limits their use. Because mechanical loading increases during development and facilitates cardiac maturation,we hypothesized that afterload would promote maturation of EHTs. To test this we developed a system in which EHTs are suspended between a rigid post and a flexible one,whose resistance to contraction can be modulated by applying braces of varying length. These braces allow us to adjust afterload conditions over two orders of magnitude by increasing the flexible post resistance from 0.09 up to 9.2 mu$N/mu$m. After three weeks in culture,optical tracking of post deflections revealed that auxotonic twitch forces increased in correlation with the degree of afterload,whereas twitch velocities decreased with afterload. Consequently,the power and work of the EHTs were maximal under intermediate afterloads. When studied isometrically,the inotropy of EHTs increased with afterload up to an intermediate resistance (0.45 mu$N/mu$m) and then plateaued. Applied afterload increased sarcomere length,cardiomyocyte area and elongation,which are hallmarks of maturation. Furthermore,progressively increasing the level of afterload led to improved calcium handling,increased expression of several key markers of cardiac maturation,including a shift from fetal to adult ventricular myosin heavy chain isoforms. However,at the highest afterload condition,markers of pathological hypertrophy and fibrosis were also upregulated,although the bulk tissue stiffness remained the same for all levels of applied afterload tested. Together,our results indicate that application of moderate afterloads can substantially improve the maturation of hiPSC-CMs in EHTs,while high afterload conditions may mimic certain aspects of human cardiac pathology resulting from elevated mechanical overload.
View Publication
Fallon P et al. (JUL 2003)
British journal of haematology 122 1 99--108
Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.
We have developed an approach for identifying primitive mobilized peripheral blood cells (PBSC) that express high levels of aldehyde dehydrogenase (ALDH). PBSC were stained with a fluorescent ALDH substrate,termed BODIPY trade mark -aminoacetaldehyde (BAAA),and then analysed using flow cytometry. A population of cells with a low side scatter (SSC) and a high level of BAAA staining,termed the SSCloALDHbr population,was readily discriminated and comprised a mean of 3 +/- 5% of leukapheresis samples. A mean of 73 +/- 11% of the SSCloALDHbr population expressed CD34 and 56 +/- 25% of all the mobilized CD34+ cells resided within the SSCloALDHbr population. The SSCloALDHbr population was largely depleted of cells with mature phenotypes and enriched for cells with immature phenotypes. Sorted SSCloALDHbr and SSCloALDHbr CD34+ PBSC were enriched for progenitors with the ability to (1) generate colony-forming units (CFU) and long-term culture (LTC)-derived CFU,(2) expand in primary and secondary LTC,and (3) generate multiple cell lineages. In 21 cancer patients who had undergone autologous PBSC transplantation,the number of infused SSCloALDHbr cells/kg highly correlated with the time to neutrophil and platelet engraftment (P textless 0.015 and P textless 0.003 respectively). In summary,peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.
View Publication