Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation.
BACKGROUND MicroRNAs (miRs or miRNAs) regulate several biological processes in the cell. However,evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. Recently,we have shown that apoptosis-associated factors,such as p53 and caspases participate in the differentiation process of mouse neural stem (NS) cells. To identify apoptosis-associated miRNAs that might play a role in neuronal development,we performed global miRNA expression profiling experiments in NS cells. Next,we characterized the expression of proapoptotic miRNAs,including miR-16,let-7a and miR-34a in distinct models of neural differentiation,including mouse embryonic stem cells,PC12 and NT2N cells. In addition,the expression of antiapoptotic miR-19a and 20a was also evaluated. RESULTS The expression of miR-16,let-7a and miR-34a was consistently upregulated in neural differentiation models. In contrast,expression of miR-19a and miR-20a was downregulated in mouse NS cell differentiation. Importantly,differential expression of specific apoptosis-related miRNAs was not associated with increased cell death. Overexpression of miR-34a increased the proportion of postmitotic neurons of mouse NS cells. CONCLUSIONS In conclusion,the identification of miR-16,let-7a and miR-34a,whose expression patterns are conserved in mouse,rat and human neural differentiation,implicates these specific miRNAs in mammalian neuronal development. The results provide new insights into the regulation of neuronal differentiation by apoptosis-associated miRNAs.
View Publication
Fortin JM et al. (MAR 2016)
Scientific Reports 2016 6 6 23579
Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny
Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
M. Sarchi et al. (Jun 2024)
Blood Cancer Discovery 5 5
Mis-splicing of Mitotic Regulators Sensitizes SF3B1-Mutated Human HSCs to CHK1 Inhibition
Precise gene editing uncovers mis-splicing of BUBR1 and CDC27 in human SF3B1-mutant HSPCs,leading to activation of mitotic checkpoint and rendering the cells sensitive to CHK1 inhibitor prexasertib.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Revach et al. (Jun 2025)
Cell Reports Medicine 6 7
Overcoming resistance to immunotherapy by targeting CD38 in human tumor explants
CD38,an ecto-enzyme involved in NAD + catabolism,is highly expressed in exhausted CD8 + T cells and has emerged as an attractive target to improve response to immune checkpoint blockade (ICB) by blunting T cell exhaustion. However,the precise role(s) and regulation of CD38 in exhausted T cells and the efficacy of CD38-directed therapeutic strategies in human cancer remain incompletely defined. Here,we show that CD38 + CD8 + T cells are induced by chronic TCR activation and type I interferon stimulation and confirm their association with ICB resistance in human melanoma. Disrupting CD38 restores cellular NAD + pools and improves T cell bioenergetics and effector functions. Targeting CD38 restores ICB sensitivity in a cohort of patient-derived organotypic tumor spheroids from explanted melanoma specimens. These results support further preclinical and clinical evaluation of CD38-directed therapies in melanoma and underscore the importance of NAD + as a vital metabolite to enhance those therapies.
View Publication
Swijnenburg R-JJ et al. (SEP 2008)
Proc Natl Acad Sci U S A 105 35 12991--6
Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts
Given their self-renewing and pluripotent capabilities,human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However,the host immune response against transplanted hESCs is not well characterized. In fact,controversy remains as to whether hESCs have immune-privileged properties. To address this issue,we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death,suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses,resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover,we have found CD4(+) T cells to be an important modulator of hESC immune-mediated rejection. Finally,we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together,these data suggest that hESCs are immunogenic,trigger both cellular and humoral-mediated pathways,and,as a result,are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Stresemann C et al. (MAR 2006)
Cancer research 66 5 2794--800
Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines.
DNA methyltransferase inhibitors represent promising new drugs for cancer therapies. The first of these compounds (5-azacytidine,Vidaza) has recently been approved as an antitumor agent,and others are presently in various stages of their preclinical or clinical development. Most of the archetypal inhibitors have been established and characterized in different experimental systems,which has thus far precluded their direct comparison. We have now established defined experimental conditions that allowed a comparative analysis of the six most widely known DNA methyltransferase inhibitors: 5-azacytidine (5-aza-CR),5-aza-2'-deoxycytidine (5-aza-CdR),zebularine,procaine,(-)-epigallocatechin-3-gallate (EGCG),and RG108. Of these,5-aza-CR,5-aza-CdR,zebularine,and EGCG were found to exhibit significant cytotoxicity in human cancer cell lines. 5-aza-CdR and EGCG were also found to be genotoxic,as evidenced by the induction of micronuclei. In addition,5-aza-CR,5-aza-CdR,zebularine,and RG108 caused concentration-dependent demethylation of genomic DNA,whereas procaine and EGCG failed to induce significant effects. Finally,the experiments in cancer cell lines were complemented by a cell-free in vitro assay with purified recombinant DNA methyltransferase,which indicated that RG108 is the only drug capable of direct enzyme inhibition. These results show a substantial diversity in the molecular activities of DNA methyltransferase inhibitors and provide valuable insights into the developmental potential of individual drugs.
View Publication
产品类型:
产品号#:
72212
72214
72902
产品名:
RG108
Zebularine
Chin EWM et al. (JUL 2016)
Neuromolecular medicine 18 3 364--377
Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro,we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155$$32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons,the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input,evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase,an important enzyme in cholinergic signaling,and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models,thereby illustrating the potential for using choline as a nutraceutical to treat RTT.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Barnea-Cramer AO et al. (JUL 2016)
Scientific reports 6 29784
Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice.
Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions,resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration,these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals,as evidenced by two visual behavioral tests. Furthermore,the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Mace EM et al. (NOV 2016)
The Journal of clinical investigation
Biallelic mutations in IRF8 impair human NK cell maturation and function.
Human NK cell deficiencies are rare yet result in severe and often fatal disease,particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells,and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8,which encodes an interferon regulatory factor,as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells,and this impairment in terminal maturation was also observed in Irf8-/-,but not Irf8+/-,mice. We then determined that impaired maturation was NK cell intrinsic,and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together,these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease,thereby emphasizing a critical role for NK cells in human antiviral defense.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Tatsumi M et al. (DEC 1997)
European journal of pharmacology 340 2-3 249--58
Pharmacological profile of antidepressants and related compounds at human monoamine transporters.
Using radioligand binding assays,we determined the equilibrium dissociation constants (KD's) for 37 antidepressants,three of their metabolites (desmethylcitalopram,desmethylsertraline,and norfluoxetine),some mood stabilizers,and assorted other compounds (some antiepileptics,Ca2+ channel antagonists,benzodiazepines,psychostimulants,antihistamines,and monoamines) for the human serotonin,norepinephrine,and dopamine transporters. Among the compounds that we tested,mazindol was the most potent at the human norepinephrine and dopamine transporters with KD's of 0.45 +/- 0.03 nM and 8.1 +/- 0.4 nM,respectively. Sertraline (KD = 25 +/- 2 nM) and nomifensine (56 +/- 3 nM) were the two most potent antidepressants at the human dopamine transporter. We showed significant correlations for antidepressant affinities at binding to serotonin (R = 0.93),norepinephrine (R = 0.97),and dopamine (R = 0.87) transporters in comparison to their respective values for inhibiting uptake of monoamines into rat brain synaptosomes. These data are useful in predicting some possible adverse effects and drug-drug interactions of antidepressants and related compounds.
View Publication