Lin GG et al. (JAN 2010)
Methods in molecular biology (Clifton,N.J.) 636 1--24
Human embryonic stem cell derivation, maintenance, and differentiation to trophoblast.
Since the first report of derivation of human embryonic stem cell (hESC) lines in 1998,many progresses have been achieved to reliably and efficiently derive,maintain,and differentiate this therapeutically promising cell type. This chapter introduces some basic and widely recognized methods that we use in our hESC core laboratory. Specifically,it includes methods for (1) deriving hESC lines without using enzyme and antibody to isolate the inner cell mass; (2) sustaining hESC self-renewal under feeder-dependent,feeder-conditioned,and defined conditions as well as pluripotency validation and quality control assays; and (3) inducing hESC differentiation to trophoblast with BMP4.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Meng G et al. (JUN 2010)
Biochemistry and cell biology = Biochimie et biologie cellulaire 88 3 479--490
Derivation of human embryonic stem cell lines after blastocyst microsurgery.
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types,human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently,although several hundred hESC lines are available in the word,only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here,we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage,and used to isolate ICM via microsurgery. Unlike previous microsurgery methods,which use specialized glass or steel needles,our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated,cut into several cell clumps,and transferred onto fresh feeders. After more than 30 passages,the two hESC lines established using this method exhibited normal morphology,karyotype,and growth rate. Moreover,they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions,including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07923
85850
85857
85870
85875
产品名:
Dispase (1 U/mL)
mTeSR™1
mTeSR™1
Xie X et al. (JAN 2011)
Stem cells and development 20 1 127--138
Effects of long-term culture on human embryonic stem cell aging.
In recent years,human embryonic stem (hES) cells have become a promising cell source for regenerative medicine. Although hES cells have the ability for unlimited self-renewal,potential adverse effects of long-term cell culture upon hES cells must be investigated before therapeutic applications of hES cells can be realized. Here we investigated changes in molecular profiles associated with young (textless60 passages) and old (textgreater120 passages) cells of the H9 hES cell line as well as young (textless85 passages) and old (textgreater120 passages) cells of the PKU1 hES cell line. Our results show that morphology,stem cell markers,and telomerase activity do not differ significantly between young and old passage cells. Cells from both age groups were also shown to differentiate into derivatives of all 3 germ layers upon spontaneous differentiation in vitro. Interestingly,mitochondrial dysfunction was found to occur with prolonged culture. Old passage cells of both the H9 and PKU1 lines were characterized by higher mitochondrial membrane potential,larger mitochondrial morphology,and higher reactive oxygen species content than their younger counterparts. Teratomas derived from higher passage cells were also found to have an uneven preference for differentiation compared with tumors derived from younger cells. These findings suggest that prolonged culture of hES cells may negatively impact mitochondrial function and possibly affect long-term pluripotency.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
B. Kan et al. (NOV 2018)
Nature communications 9 1 4822
Cellular metabolism constrains innate immune responses in early human ontogeny.
Pathogen immune responses are profoundly attenuated in fetuses and premature infants,yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic,metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-$\gamma$-regulated metabolic pathways,limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast,they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants,and suggest that the fetal immune system is metabolically programmed to avoid energetically costly,dispensable and potentially harmful immune responses during ontogeny.
View Publication
产品类型:
产品号#:
07801
07811
07851
07861
17858
17858RF
18060
18061
100-0694
产品名:
Lymphoprep™
Lymphoprep™
EasySep™人CD14正选试剂盒II
RoboSep™ 人CD14正选试剂盒II
Lymphoprep™
Lymphoprep™
EasySep™人CD14正选试剂盒II
C. Mirabelli et al. (apr 2022)
mBio 13 2 e0017522
Human Norovirus Triggers Primary B Cell Immune Activation In Vitro.
Human norovirus (HNoV) is a global health and socioeconomic burden,estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3??days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next,we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+,memory-switched CD27+ IgD-,memory-unswitched CD27+ IgD+,and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar,changes in the B cell subset distribution upon infection were observed,which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly,primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro,which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised,the elderly,and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover,HNoV does not elicit lifelong immunity as repeat infections are common,presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity,we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood,spleen,and lymph node specimens,while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1,we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.
View Publication
(Jun 2025)
Journal of Molecular and Cellular Cardiology Plus 13 15
MitoQ Protects Against Oxidative Stress-Induced Mitochondrial Dysregulation in Human Cardiomyocytes
The overproduction of reactive oxygen species (ROS) and mitochondrial dysregulation are regarded as key mechanisms in the progression of cardiac remodelling in cardiometabolic diseases including heart failure. Conventional treatments are often ineffective as they do not specifically target the underlying pathological mechanisms. Mitoquinone mesylate (MitoQ),a mitochondrial-targeted antioxidant has been reported to be protective against vascular dysfunction in hypertension,diabetic kidney disease and alcohol-induced liver damage. However,the cardioprotective potential of MitoQ to limit oxidative stress-induced mitochondrial remodelling in cardiomyocytes has not been fully resolved. We sought to investigate the effect of MitoQ and its mitochondrial-targeting moiety dodecyl-triphenylphosphonium (dTPP) on hydrogen peroxide-induced overproduction of ROS,mitochondrial dysregulation and cell death in H9C2 rat cardiomyoblasts (H9C2-rCM) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiomyocytes were exposed to acute or chronic treatment (5–60 min or 48 h) of vehicle control (0.0001 % Ultrapure Milli-Q water),hydrogen peroxide (100 ?M) ± MitoQ (1 ?M) or dTPP (1 ?M) control. Hydrogen peroxide-induced overproduction of ROS,extracellular superoxide,mitochondrial ROS,mitochondrial hyperpolarisation and cell death were significantly blunted by MitoQ,but not dTPP,suggesting that the coenzyme Q10 moiety of MitoQ is protective under these conditions. Interestingly,both MitoQ and dTPP exhibited a pro-mitochondrial fusion effect by preserving mitochondrial network and reducing mitochondrial fragmentation in oxidative stress conditions. Overall,our findings confirm the cytoprotective potential of MitoQ to limit oxidative stress-induced adverse mitochondrial remodelling and dysregulation that is clinically observed in cardiometabolic-induced cardiac dysfunction in the failing heart. Graphical abstractBioRender Scientific Image and Illustration Software were used to generate the graphical abstract.Unlabelled Image Highlights•Oxidative stress is a key driver of mitochondrial dysregulation and cell death in cardiomyocytes.•MitoQ exhibits cytoprotection against elevated ROS production in human cardiomyocytes.•Mitochondrial structure and regulation were preserved in human cardiomyocytes with MitoQ treatment.
View Publication
Nishimura AL et al. (MAR 2014)
PLoS ONE 9 3 e91269
Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells.
TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain,including the variant M337V,which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool,we designed and screened a set of siRNAs that specifically target TDP-43(M337V) mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43(wt) or GFP-TDP-43(M337V) or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions,which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA,cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43(M337V) allele in mammalian and patient cells,thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
A. Sivakoses et al. (Mar 2025)
PeerJ 13 1
Triple negative breast cancer cells acquire lymphocyte proteins and genomic DNA during trogocytosis with T cells
Trogocytosis is the process by which a recipient cell siphons small membrane fragments and proteins from a donor cell and can be utilized by cancer cells to avoid immune detection. We observed lymphocyte specific protein expressed by triple negative breast cancer (TNBC) cells via immunofluorescence imaging of patient samples. Image analysis of Cluster of Differentiation 45RA (CD45RA) expression,a naïve T cell specific protein,revealed that all stages of TNBCs express CD45RA. Flow cytometry revealed TNBC cells trogocytose CD45 protein from T cells. We also showed that the acquisition of these lymphoid markers is contact dependent. Confocal and super-resolution imaging further revealed CD45+ spherical structures containing T cell genomic DNA inside TNBC cells after co-culture. Trogocytosis between T cells and TNBC cells altered tumor cell expression of PTPRC,the gene that encodes for CD45. Our results revealed that CD45 is obtained by TNBC cells from T cells via trogocytosis and that TNBC cells express CD45 intracellularly and on the membrane.
View Publication