Wang W et al. (NOV 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 45 18283--8
Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1.
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4,Sox2,Klf4,and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming,but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs,which resembled ground-state mouse ES cells in growth properties,gene expression,and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.
View Publication
产品类型:
产品号#:
72722
72724
72964
产品名:
CD437
CD437
AM580
文献
Sciaccaluga M et al. ( 2007)
Oncology reports 17 1 17--23
Constitutive phosphorylation of Janus kinase 2 in the GL15 glioblastoma derived human cell line.
The notion that gliomas could originate from mutated glial precursor cells highlights the possibility of modulating the proliferative and migratory behaviour of glioma cells by acting on the molecular mechanisms operative during the development of the Central Nervous System (CNS),but absent in the normal adult brain. We show that the GL15 glioblastoma derived human cell line displays a high expression of nestin which,combined with the previously demonstrated high expression of vimentin,constitutes a characteristic of astrocyte restricted precursors. We also show that,in analogy with some leukaemia cells,GL15 cells display the constitutively phosphorylated form of Janus kinase 2 (JAK2),a tyrosine kinase expressed during CNS development but undetectable in the normal adult brain. The constitutive activation of JAK2 does not result from chromosomal aberrations involving the JAK2 gene,but most probably from abnormally activated transduction systems operative in glioblastoma cells. We then investigated the effects of tyrphostin AG490,an inhibitor of JAK2 autophosphorylation,on GL15 cell growth. In the absence of exogenous growth factors and cytokines,10 microM tyrphostin AG490 induces an S phase arrest,combined with a partial impairment of the G2 phase of the cell cycle. The abnormally activated JAK2 could then potentially represent a target for a selective pharmacological approach in glioblastoma cells in which a combination of glial precursor characteristics and genetic alterations occurs.
View Publication
产品类型:
产品号#:
72932
产品名:
AG-490
文献
Bhinge A et al. (JUN 2014)
EMBO Journal 33 11 1271--1283
MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-$\$/BMP signaling.
Several transcription factors (TFs) have been implicated in neuroectoderm (NE) development,and recently,the TF PAX6 was shown to be critical for human NE specification. However,microRNA networks regulating human NE development have been poorly documented. We hypothesized that microRNAs activated by PAX6 should promote NE development. Using a genomics approach,we identified PAX6 binding sites and active enhancers genome-wide in an in vitro model of human NE development that was based on neural differentiation of human embryonic stem cells (hESC). PAX6 binding to active enhancers was found in the proximity of several microRNAs,including hsa-miR-135b. MiR-135b was activated during NE development,and ectopic expression of miR-135b in hESC promoted differentiation toward NE. MiR-135b promotes neural conversion by targeting components of the TGF-β and BMP signaling pathways,thereby inhibiting differentiation into alternate developmental lineages. Our results demonstrate a novel TF-miRNA module that is activated during human neuroectoderm development and promotes the irreversible fate specification of human pluripotent cells toward the neural lineage.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Rodrigues G et al. ( 2015)
1283 137--145
Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.
Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs),and their neuronal progeny,will play an important role in disease modeling,drug screening tests,central nervous system development studies,and may even become valuable for regenerative medicine treatments. Nonetheless,it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs,and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here,we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days,and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS),leaving the NP population nearly free of PSCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Devlin A-C et al. (JAN 2015)
Nature Communications 6 1--12
Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability
Fong AH et al. (AUG 2016)
Tissue Engineering Part A 22 15-16 1016--1025
Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular,human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency,their self-renewal potential,and their ability to create patient-specific cell lines. Unfortunately,pluripotent stem cell-derived CMs are immature,with characteristics more closely resembling fetal CMs than adult CMs,and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation,as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold,compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes,Junctin,CaV1.2,NCX1,HCN4,SERCA2a,Triadin,and CASQ2. Consistent with this,we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine,likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together,these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Tomov ML et al. (DEC 2016)
Scientific Reports 6 1 37637
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics,epigenomics,and bioinformatics that inform on genetic pathways directing tissue development and function. When possible,population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American,Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype,verified teratoma formation,pluripotency biomarkers,and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural,pancreatic,and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.
View Publication
产品类型:
产品号#:
05835
05839
08581
08582
产品名:
STEMdiff™ 神经诱导培养基
STEMdiff™ 神经诱导培养基
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
文献
M. T. Dell'anno et al. ( 2018)
Nature Communications
Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option,but optimal cell type and mechanistic aspects remain poorly defined. Here,we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons,requires the matching of neural identity to the anatomical site of injury,and is accompanied by expression of specific marker proteins. Thus,human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
View Publication
Traggiai E et al. (FEB 2008)
Stem cells (Dayton,Ohio) 26 2 562--9
Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients.
Human bone marrow multipotent mesenchymal stromal cells are progenitor cells that can be expanded in vitro and differentiate into various cells of mesodermal origin. They contribute to the bone marrow reticular niche,where mature B cells and long-lived plasma cells are maintained. Multipotent mesenchymal stromal cells were recently shown to modulate T- and B-cell proliferation and differentiation,dendritic cell maturation,and natural killer activity. These immunoregulatory properties encouraged a possible use of these cells to modulate autoimmune responses in humans. We studied the influence of bone marrow mesenchymal stem cells on highly purified B-cell subsets isolated from healthy donors and total B cells from pediatric systemic lupus erythematosus patients. Bone marrow mesenchymal stem cells promoted proliferation and differentiation into immunoglobulin-secreting cells of transitional and naive B cells stimulated with an agonist of Toll-like receptor 9,in the absence of B cell receptor triggering. They strongly enhanced proliferation and differentiation into plasma cells of memory B-cell populations. A similar effect was observed in response to polyclonal stimulation of B cells isolated from pediatric patients with systemic lupus erythematosus. This study casts important questions on bone marrow mesenchymal stem cells as a therapeutic tool in autoimmune diseases in which B-cell activation is crucially implicated in the pathogenesis of the disease.
View Publication
产品类型:
产品号#:
05401
05402
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Huat T et al. (APR 2015)
International Journal of Molecular Sciences 16 5 9693--9718
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF,(B) EGF + bFGF + IGF-1,and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation,microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs,30 were consistently expressed for minimum of two consecutive time intervals. In Group B,only miR-496 was up-regulated and 12 microRNAs,including the let-7 family,miR-1224,miR-125a-3p,miR-214,miR-22,miR-320,miR-708,and miR-93,were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22,miR-214,miR-125a-3p,miR-320 and let-7 family) are associated with reduction of apoptosis. Here,we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
View Publication