Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells.
The recent advances,offered by cell therapy in the regenerative medicine field,offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors,such as myoblasts or satellite cells,possess a marked regenerative capacity,but the exploitation of this potential still encounters significant challenges in clinical application,due to low rate of proliferation in vitro,as well as a reduced self-renewal capacity. In this scenario,induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches,but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs,generated from pericytes and fibroblasts,exploiting skeletal muscle-derived extracellular vesicles (EVs),in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological shuttles" to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches."
View Publication
Krause U et al. ( 2014)
Cell death & disease 5 e1093
An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity.
It is widely accepted that canonical Wnt (cWnt) signaling is required for the differentiation of osteoprogenitors into osteoblasts. Furthermore,tumor-derived secretion of the cWnt-antagonist Dickkopf-1 (Dkk-1) is known to cause bone destruction,inhibition of repair and metastasis in many bone malignancies,but its role in osteosarcoma (OS) is still under debate. In this study,we examined the role of Dkk-1in OS by engineering its overexpression in the osteochondral sarcoma line MOS-J. Consistent with the known role of Dkk-1 in osteoblast differentiation,Dkk-1 inhibited osteogenesis by the MOSJ cells themselves and also in surrounding tissue when implanted in vivo. Surprisingly,Dkk-1 also had unexpected effects on MOSJ cells in that it increased proliferation and resistance to metabolic stress in vitro and caused the formation of larger and more destructive tumors than controls upon orthotopic implantation. These effects were attributed in part to upregulation of the stress response enzyme and cancer stem cell marker aldehyde-dehydrogenase-1 (ALDH1). Direct inhibition of ALDH1 reduced viability under stressful culture conditions,whereas pharmacological inhibition of cWnt or overexpression of ALDH1 had a protective effect. Furthermore,we observed that ALDH1 was transcriptionally activated in a c-Jun-dependent manner through a pathway consisting of RhoA,MAP-kinase-kinase-4 and Jun N-terminal Kinase (JNK),indicating that noncanonical planar cell polarity-like Wnt signaling was the mechanism responsible. Together,our results therefore demonstrate that Dkk-1 enhances resistance of OS cells to stress by tipping the balance of Wnt signaling in favor of the non-canonical Jun-mediated Wnt pathways. In turn,this results in transcriptional activation of ALDH1 through Jun-responsive promoter elements. This is the first report linking Dkk-1 to tumor stress resistance,further supporting the targeting of Dkk-1 not only to prevent and treat osteolytic bone lesions but also to reduce numbers of stress-resistant tumor cells.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Morinaga N et al. ( 1999)
The Journal of biological chemistry 274 25 17417--17423
Brefeldin A inhibited activity of the sec7 domain of p200, a mammalian guanine nucleotide-exchange protein for ADP-ribosylation factors.
A brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARF) was purified earlier from bovine brain cytosol. Cloning and expression of the cDNA confirmed that the recombinant protein (p200) is a BFA-sensitive ARF GEP. p200 contains a domain that is 50% identical in amino acid sequence to a region in yeast Sec7,termed the Sec7 domain. Sec7 domains have been identified also in other proteins with ARF GEP activity,some of which are not inhibited by BFA. To identify structural elements that influence GEP activity and its BFA sensitivity,several truncated mutants of p200 were made. Deletion of sequence C-terminal to the Sec7 domain did not affect GEP activity. A protein lacking 594 amino acids at the N terminus,as well as sequence following the Sec7 domain,also had high activity. The mutant lacking 630 N-terminal amino acids was,however,only 1% as active,as was the Sec7 domain itself (mutant lacking 697 N-terminal residues). It appears that the Sec7 domain of p200 contains the catalytic site but additional sequence (perhaps especially that between positions 595 and 630) modifies activity dramatically. Myristoylated recombinant ARFs were better than non-myristoylated as substrates; ARFs 1 and 3 were better than ARF5,and no activity was detected with ARF6. Physical interaction of the Sec7 domain with an ARF1 mutant was demonstrated,but it was much weaker than that of the cytohesin-1 Sec7 domain with the same ARF protein. Effects of BFA on p200 and all mutants with high activity were similar with approximately 50% inhibition at textless/=50 microM. The inactive BFA analogue B36 did not inhibit the Sec7 domain or p200. Thus,the Sec7 domain of p200,like that of Sec7 itself (Sata,M.,Donaldson,J. G.,Moss,J.,and Vaughan,M. (1998) Proc. Natl. Acad. Sci. U. S. A. 95,4204-4208),plays a role in BFA inhibition as well as in GEP activity,although the latter is markedly modified by other structural elements.
View Publication
产品类型:
产品号#:
73012
73014
产品名:
Brefeldin A
布雷非德菌素A
von Bonin A et al. (JAN 2011)
Experimental dermatology 20 1 41--7
Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases.
T-cell-mediated processes play an essential role in the pathogenesis of several inflammatory skin diseases such as atopic dermatitis,allergic contact dermatitis and psoriasis. The aim of this study was to investigate the role of the IL-2-inducible tyrosine kinase (Itk),an enzyme acting downstream of the T-cell receptor (TCR),in T-cell-dependent skin inflammation using three approaches. Itk knockout mice display significantly reduced inflammatory symptoms in mouse models of acute and subacute contact hypersensitivity (CHS) reactions. Systemic administration of a novel small molecule Itk inhibitor,Compound 44,created by chemical optimization of an initial high-throughput screening hit,inhibited Itk's activity with an IC50 in the nanomolar range. Compound 44 substantially reduced proinflammatory immune responses in vitro and in vivo after systemic administration in two acute CHS models. In addition,our data reveal that human Itk,comparable to its murine homologue,is expressed mainly in T cells and is increased in lesional skin from patients with atopic dermatitis and allergic contact dermatitis. Finally,silencing of Itk by RNA interference in primary human T cells efficiently blocks TCR-induced lymphokine secretion. In conclusion,Itk represents an interesting new target for the therapy of T-cell-mediated inflammatory skin diseases.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
(Jun 2024)
Nature Communications 15
BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network
Characterization and modeling of biological neural networks has emerged as a field driving significant advancements in our understanding of brain function and related pathologies. As of today,pharmacological treatments for neurological disorders remain limited,pushing the exploration of promising alternative approaches such as electroceutics. Recent research in bioelectronics and neuromorphic engineering have fostered the development of the new generation of neuroprostheses for brain repair. However,achieving their full potential necessitates a deeper understanding of biohybrid interaction. In this study,we present a novel real-time,biomimetic,cost-effective and user-friendly neural network capable of real-time emulation for biohybrid experiments. Our system facilitates the investigation and replication of biophysically detailed neural network dynamics while prioritizing cost-efficiency,flexibility and ease of use. We showcase the feasibility of conducting biohybrid experiments using standard biophysical interfaces and a variety of biological cells as well as real-time emulation of diverse network configurations. We envision our system as a crucial step towards the development of neuromorphic-based neuroprostheses for bioelectrical therapeutics,enabling seamless communication with biological networks on a comparable timescale. Its embedded real-time functionality enhances practicality and accessibility,amplifying its potential for real-world applications in biohybrid experiments. Beaubois et al. introduce a real-time biomimetic neural network for biohybrid experiments,providing a tool to study closed-loop applications for neuroscience and neuromorphic-based neuroprostheses.
View Publication
Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons.
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions,it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions,however,genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here,we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment,we identified a novel gene that appears to contribute to AN pathophysiology,TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions,especially anxiety disorders,we believe this report is its first association with AN. Moreover,our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement,and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Baraniuk JN et al. (SEP 1995)
The European respiratory journal 8 9 1458--64
Localization of neutral endopeptidase (NEP) mRNA in human bronchi.
Neutral endopeptidase (NEP) may regulate peptide-induced inflammation in the respiratory tract. It is of interest to determine which respiratory resident cells express NEP. Trachea and bronchi from seven nonsmoking,nonasthmatic subjects were examined. NEP messenger ribonucleic acid (mRNA) was characterized by Northern blot hybridization of cultured human tracheobronchial epithelial and smooth muscle cells,and reverse transcriptase-polymerase chain reaction (RT-PCR) in trachea and bronchi. In situ hybridization with biotin- and 35S-labelled antisense complementary ribonucleic acid (cRNA) probes was used to determine the distribution of NEP mRNA in human bronchial mucosa. NEP-immunoreactive material was detected using MEK10 murine monoclonal antibodies and the immunogold method with silver enhancement. NEP mRNA was 4.5 kb in size in the cultured human smooth muscle and epithelial cells by Northern blot analysis. No evidence was found by RT-PCR for truncated,alternatively spliced NEP mRNAs,such as del exon 16 or del exons 5-18 in human bronchus. NEP mRNA was detected by in situ hybridization in epithelial cells,submucosal glands,bronchial smooth muscle and endothelium. NEP-immunoreactive material was identified in the epithelium,submucosal glands,bronchial smooth muscle,and endothelium,demonstrating an excellent correlation between the distribution of NEP mRNA and the cell surface protein. NEP mRNA and immunoreactive material were excluded from epithelial goblet cell and submucosal gland mucous cell vacuoles. We conclude that the various sites of NEP protein and mRNA expression correlate with the locations of peptide receptors and NEP enzyme function,and are consistent with the hypothesis that NEP may regulate peptide-induced inflammation in human bronchi.
View Publication