Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.
BACKGROUND Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus,tumor-initiating cell-like cells are generated. METHODS We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR,flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. RESULTS We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. CONCLUSIONS Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sato K et al. (JAN 2006)
The Journal of experimental medicine 203 1 239--50
TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque.
Acute coronary syndromes (ACS) are precipitated by a rupture of the atherosclerotic plaque,often at the site of T cell and macrophage infiltration. Here,we show that plaque-infiltrating CD4 T cells effectively kill vascular smooth muscle cells (VSMC). VSMCs sensitive to T cell-mediated killing express the death receptor DR5 (TNF-related apoptosis-inducing ligand [TRAIL] receptor 2),and anti-TRAIL and anti-DR5 antibodies block T cell-mediated apoptosis. CD4 T cells that express TRAIL upon stimulation are expanded in patients with ACS and more effectively induce VSMC apoptosis. Adoptive transfer of plaque-derived CD4 T cells into immunodeficient mice that are engrafted with human atherosclerotic plaque results in apoptosis of VSMCs,which was prevented by coadministration of anti-TRAIL antibody. These data identify that the death pathway is triggered by TRAIL-producing CD4 T cells as a direct mechanism of VSMC apoptosis,a process which may lead to plaque destabilization.
View Publication
产品类型:
产品号#:
15022
15062
产品名:
RosetteSep™人CD4+ T细胞富集抗体混合物
RosetteSep™人CD4+ T细胞富集抗体混合物
L. Gao et al. ( 2019)
Scientific reports 9 1 3462
Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells.
Glioblastoma (GBM) is the most common and aggressive malignant tumor in adult brain. Even with the current standard therapy including surgical resection followed by postoperative radiotherapy and chemotherapy with temozolomide (Temo),GBM patients still have a poor median survival. Reprogramming of tumor cells into non-malignant cells might be a promising therapeutic strategy for malignant tumors,including GBM. Based on previous studies using small molecules to reprogram astrocytes into neuronal cells,here we further identified a FTT cocktail of three commonly used drugs (Fasudil,Tranilast,and Temo) to reprogram patient-derived GBM cells,either cultured in serum containing or serum-free medium,into neuronal like cells. FTT-treated GBM cells displayed a neuronal like morphology,expressed neuronal genes,exhibited neuronal electrophysiological properties,and showed attenuated malignancy. More importantly,FTT cocktail more significantly suppressed tumor growth and prolonged survival in GBM patient derived xenograft than Temo alone. Our study provided preclinical evidence that the neuronal reprogramming drug cocktail might be a promising strategy to improve the existing treatment for GBM.
View Publication
产品类型:
产品号#:
05790
05792
05793
05794
05795
产品名:
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
Hsiao C et al. (MAY 2016)
Biotechnology Journal 11 5 662--675
Human pluripotent stem cell culture density modulates YAP signaling
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however,the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway,which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs,we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities,YAP phosphorylation and localization to the cytoplasm increased,which led to decreased YAP-mediated transcriptional activity. Furthermore,total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally,the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Arscott WT et al. (SEP 2011)
Brain research 1413 1--8
Interferon β-1b directly modulates human neural stem/progenitor cell fate.
Interferon beta (IFN-β) is a mainline treatment for multiple sclerosis (MS); however its exact mechanism of action is not completely understood. IFN-β is known as an immunomodulator; although recent evidence suggests that IFN-β may also act directly on neural stem/progenitor cells (NPCs) in the central nervous system (CNS). NPCs can differentiate into all neural lineage cells,which could contribute to the remyelination and repair of MS lesions. Understanding how IFN-β influences NPC physiology is critical to develop more specific therapies that can better assist this repair process. In this study,we investigated the effects of IFN β-1b (Betaseron®) on human NPCs in vitro (hNPCs). Our data demonstrate a dose-dependent response of hNPCs to IFN β-1b treatment via sustained proliferation and differentiation. Furthermore,we offer insight into the signaling pathways involved in these mechanisms. Overall,this study shows a direct effect of IFN β-1b on hNPCs and highlights the need to further understand how current MS treatments can modulate endogenous NPC populations within the CNS.
View Publication
产品类型:
产品号#:
05751
产品名:
NeuroCult™ NS-A 扩增试剂盒(人)
Stockmann M et al. (AUG 2013)
Stem Cell Reviews and Reports 9 4 475--492
Developmental and Functional Nature of Human iPSC Derived Motoneurons
Mehta A et al. (FEB 2013)
Toxicological Sciences 131 2 458--469
Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes
Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study,we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide),class III (sotalol and amiodarone),and class IV (verapamil),whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability,class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs,verapamil shortened cFPD and FPmin by 25 and 50%,respectively. Furthermore,verapamil reduced beating frequencies drastically. Importantly,the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes,drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine,flecainide,and sotalol was demonstrated at supraphysiological concentrations. Furthermore,off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
H. Xi et al. (FEB 2017)
Cell reports 18 6 1573--1585
In Vivo Human Somitogenesis Guides Somite Development from hPSCs.
Somites form during embryonic development and give rise to unique cell and tissue types,such as skeletal muscles and bones and cartilage of the vertebrae. Using somitogenesis-stage human embryos,we performed transcriptomic profiling of human presomitic mesoderm as well as nascent and developed somites. In addition to conserved pathways such as WNT-$\beta$-catenin,we also identified BMP and transforming growth factor $\beta$ (TGF-$\beta$) signaling as major regulators unique to human somitogenesis. This information enabled us to develop an efficient protocol to derive somite cells in vitro from human pluripotent stem cells (hPSCs). Importantly,the in-vitro-differentiating cells progressively expressed markers of the distinct developmental stages that are known to occur during in vivo somitogenesis. Furthermore,when subjected to lineage-specific differentiation conditions,the hPSC-derived somite cells were multipotent in generating somite derivatives,including skeletal myocytes,osteocytes,and chondrocytes. This work improves our understanding of human somitogenesis and may enhance our ability to treat diseases affecting somite derivatives.
View Publication
D. Loeffler et al. (mar 2022)
Blood 139 13 2011--2023
Asymmetric organelle inheritance predicts human blood stem cell fate.
Understanding human hematopoietic stem cell fate control is important for its improved therapeutic manipulation. Asymmetric cell division,the asymmetric inheritance of factors during division instructing future daughter cell fates,was recently described in mouse blood stem cells. In human blood stem cells,the possible existence of asymmetric cell division remained unclear because of technical challenges in its direct observation. Here,we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated,nonrandom process. Furthermore,multiple additional organelles,including autophagosomes,mitophagosomes,autolysosomes,and recycling endosomes,show preferential asymmetric cosegregation with lysosomes. Importantly,asymmetric lysosomal inheritance predicts future asymmetric daughter cell-cycle length,differentiation,and stem cell marker expression,whereas asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence,human hematopoietic stem cell fates are regulated by asymmetric cell division,with both mechanistic evolutionary conservation and differences to the mouse system.
View Publication
产品类型:
产品号#:
02698
17856
17856RF
100-1569
产品名:
人类低密度脂蛋白
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
EasySep™人CD34正选试剂盒 II
V. Sundaramoorthy et al. (mar 2020)
Viruses 12 4
Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures.
Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study,we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures,including upregulation of inflammatory chemokines,lack of neuronal apoptosis,and axonal transmission of viruses in neuronal networks. In addition,we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies,which could lead to improved control methods.
View Publication
产品类型:
产品号#:
05711
05750
05833
07152
05790
05792
05793
05794
05795
34811
34850
34815
34821
34825
34860
100-1281
产品名:
NeuroCult™ SM1 神经添加物
NeuroCult™ NS-A 基础培养基(人)
STEMdiff™神经前体细胞培养基
N2 添加物-A
BrainPhys™神经元培养基
BrainPhys™神经元培养基和SM1试剂盒
BrainPhys™ 神经元培养基N2-A和SM1试剂盒
BrainPhys™原代神经元试剂盒
BrainPhys™ hPSC 神经元试剂盒
AggreWell™ 800 24孔板,1个
AggreWell™ 800 24孔板启动套装
AggreWell™ 800 24孔板,5个
AggreWell™ 800 6孔板,1个
AggreWell™ 800 6孔板,5个
AggreWell™ 800 6孔板启动套装
NeuroCult™ SM1 神经添加物
Megjugorac NJ et al. (DEC 2009)
Journal of leukocyte biology 86 6 1359--63
Modulation of human plasmacytoid DC function by IFN-lambda1 (IL-29).
The type III family of IFNs displays immunomodulatory and antiviral activity. Each member (IFN-lambda1,-2,and -3) signals through the same heterodimeric receptor complex,which consists of the binding and signaling subunit (IL-28Ralpha) plus the IL-10Rbeta chain. Although the receptor has a wide tissue distribution,the direct effects of IFN-lambda on various immune cell subsets have not been fully characterized. We have identified high levels of IL-28Ralpha mRNA in pDC from peripheral blood and hypothesized that IFN-lambda plays an important role in pDC maturation and development. We show that stimulation of pDC with HSV or Imiquimod causes an increase in IL-28Ralpha mRNA. In these cells,IFN-lambda1 alters expression of the costimulatory molecules CD80 and ICOS-L and synergizes with IFN-alpha to up-regulate CD83. In addition,IFN-lambda1 has a variable effect on the homing molecule expression of pDC and mDC. IFN-lambda1-treated pDC display a marked difference in their ability to stimulate production of the signature cytokines IL-13,IFN-gamma,and IL-10 in a MLR. This work characterizes the variable effects of IFN-lambda on DC surface molecule expression and identifies a role in pDC activation and immunostimulatory potential.
View Publication