Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Bohannon C et al. ( 2016)
Nature communications 7 11826
Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection.
Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells-with T-cell help-undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific,induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells,which develop in germinal centres and then home to the bone marrow,IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly,their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However,these IgM plasma cells are probably not antigen-selected,as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally,antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge.
View Publication
产品类型:
产品号#:
19854
19854RF
产品名:
EasySep™小鼠B细胞分选试剂盒
RoboSep™ 小鼠B细胞分选试剂盒
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
O'Brien CM et al. (DEC 2016)
Stem cells (Dayton,Ohio)
New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterised monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs),confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs,providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition,we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs),normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency,and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
05970
产品名:
P. A. Morawski et al. (JAN 2017)
Scientific reports 7 40838
Non-pathogenic tissue-resident CD8+ T cells uniquely accumulate in the brains of lupus-prone mice.
Severe lupus often includes psychiatric and neurological sequelae,although the cellular contributors to CNS disease remain poorly defined. Using intravascular staining to discriminate tissue-localized from blood-borne cells,we find substantial accumulation of CD8+ T cells relative to other lymphocytes in brain tissue,which correlates with lupus disease and limited neuropathology. This is in contrast to all other affected organs,where infiltrating CD4+ cells are predominant. Brain-infiltrating CD8+ T cells represent an activated subset of those found in the periphery,having a resident-memory phenotype (CD69+CD122-PD1+CD44+CD62L-) and expressing adhesion molecules (VLA-4+LFA-1+) complementary to activated brain endothelium. Remarkably,infiltrating CD8+ T cells do not cause tissue damage in lupus-prone mice,as genetic ablation of these cells via $\beta$2 m deficiency does not reverse neuropathology,but exacerbates disease both in the brain and globally despite decreased serum IgG levels. Thus,lupus-associated inflammation disrupts the blood-brain barrier in a discriminating way biased in favor of non-pathogenic CD8+ T cells relative to other infiltrating leukocytes,perhaps preventing further tissue damage in such a sensitive organ.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
M. E. C. Bruno et al. (jun 2022)
GeroScience 44 3 1761--1778
Accumulation of ?? T cells in visceral fat with aging promotes chronic inflammation.
Adipose tissue dysfunction is strongly linked to the development of chronic inflammation and cardiometabolic disorders in aging. While much attention has been given to the role of resident adipose tissue immune cells in the disruption of homeostasis in obesity,age-specific effects remain understudied. Here,we identified and characterized a population of ?? T cells,which show unique age-dependent accumulation in the visceral adipose tissue (VAT) of both mice and humans. Diet-induced obesity likewise increased ?? T cell numbers; however,the effect was greater in the aged where the increase was independent of fat mass. ?? T cells in VAT express a tissue-resident memory T cell phenotype (CD44hiCD62LlowCD69+) and are predominantly IL-17A-producing cells. Transcriptome analyses of immunomagnetically purified ?? T cells identified significant age-associated differences in expression of genes related to inflammation,immune cell composition,and adipocyte differentiation,suggesting age-dependent qualitative changes in addition to the quantitative increase. Genetic deficiency of ?? T cells in old age improved the metabolic phenotype,characterized by increased respiratory exchange ratio,and lowered levels of IL-6 both systemically and locally in VAT. Decreased IL-6 was predominantly due to reduced production by non-immune stromal cells,primarily preadipocytes,and adipose-derived stem cells. Collectively,these findings suggest that an age-dependent increase of tissue-resident ?? T cells in VAT contributes to local and systemic chronic inflammation and metabolic dysfunction in aging.
View Publication
产品类型:
产品号#:
17656
17668
17668RF
产品名:
EasySep™ Release小鼠PE正选试剂盒
EasySep™小鼠FITC阳性选择试剂盒II
RoboSep™ 小鼠FITC正选试剂盒II
K. F. Boligan et al. (aug 2022)
Current protocols 2 8 e504
Methods to Evaluate the Potential Clinical Significance of Antibodies to Red Blood Cells.
Immune-mediated red blood cell (RBC) destruction due to antibodies is an ongoing problem in transfusion medicine for the selection of the safest blood. Serological testing often revealed incompatibility with donors' RBCs. When this incompatible blood was transfused,destruction was due mostly to extravascular-mediated phagocytosis of the antibody-opsonized RBCs; however,intravascular hemolysis was sometimes observed without explanation. Based on serology,antibodies with potential for clinical sequalae could not be ascertained; thus,antigen-negative blood was usually selected for transfusion to avoid problems. Antibodies to antigens having very high frequency in the general population (>95%),however,made selection of antigen-negative blood difficult and sometimes impossible. Some patients,who were sensitized by previous transfusions or by pregnancy,developed multiple antibodies,again creating a problem for finding compatible blood for transfusion,without the ability to discern which of the antibodies may be clinically irrelevant and ignored. Transfusion medicine scientists began searching for an in vitro means to determine the in vivo outcome of transfusion of blood that was serologically incompatible. Methods such as chemiluminescence,monocyte-macrophage phagocytosis,and antibody-dependent cellular cytotoxicity (ADCC) were described. Over the years,the monocyte monolayer assay (MMA) has emerged as the most reliable in vitro assay for the prediction of the clinical relevance of a given antibody. ADCC has not been fully studied but has the potential to be useful for predicting which antibodies may result in intravascular hemolysis. This article captures the protocols for the implementation and readout of the MMA and ADCC assays for use in predicting the clinical significance of antibodies in a transfusion setting. {\textcopyright} 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Monocyte monolayer assay (MMA) Basic Protocol 2: Antibody-dependent cellular cytotoxicity assay (ADCC).
View Publication
产品类型:
产品号#:
17955
19055
19055RF
17955RF
100-0960
产品名:
EasySep™人NK细胞分选试剂盒
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
RoboSep™ 人NK细胞分选试剂盒
EasySep™人NK细胞分离试剂盒
(Sep 2024)
Stem Cell Research & Therapy 15 8
Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1
BackgroundUnderstanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models,lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate,and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule.MethodsTo establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells,we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways,and construct cell lines carrying an inducible NKX3-1 expressing cassette,together with three-dimensional culture system. Unpaired t test was applied for statistical analyses.ResultsWe first successfully generate the definitive endoderm,hindgut,and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1,but fail to express NKX3-1. Therefore,we construct NKX3-1-inducible cell line by homologous recombination,which is eventually able to yield AR,FOXA1,and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally,combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations.ConclusionsThis study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line,as well as provides a stepwise differentiation protocol to generate human prostate-like organoids,which should facilitate the studies on prostate development and disease pathogenesis.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03886-y.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
(May 2024)
Cell reports 43 5
Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming
SUMMARY During cell fate transitions,cells remodel their transcriptome,chromatin,and epigenome; however,it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here,we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that,following heterokaryon formation,the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG,conversely,has significant nascent RNA transcription only at 48 h after cell fusion but,strikingly,exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent. In brief Martinez-Sarmiento et al. demonstrate that,during heterokaryon reprogramming,global chromatin decondensation and loss of repressive histone modifications occur at late stages after cell fusion. Activation of OCT4 precedes global chromatin decompaction and does not require the opening of its local genomic region. Conversely,NANOG activation occurs after OCT4 activation,and the NANOG locus undergoes opening prior to its transcriptional activation. Graphical Abstract
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Jun 2024)
PLOS Genetics 20 6
An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition,the overwhelming majority of copies are degenerate and immobile. Nevertheless,both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability,inflammation,or cellular senescence) on their hosts,and L1’s contributions to aging and aging diseases is an area of active research. However,because of the cell type-specific nature of transposon control,the catalogue of L1 regulators remains incomplete. Here,we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation,we experimentally modulate the levels of top candidates in vitro,including IL16,STARD5,HSD17B12,and RNF5,and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably,we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover,a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle,but widespread,upregulation of L1 subfamilies. Finally,we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data,we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels. Author summaryTransposable elements,or jumping genes,are fragments of DNA that have or once had the ability to mobilize to a new location within our genome. In humans,the most abundant transposable element is LINE-1 (L1),accounting for ~17% of our total DNA. Though L1 is generally repressed in healthy human cells,derepression of transposable elements (including L1) has been observed in aging and in aging-associated diseases. Additionally,there is increasing evidence that L1 transcriptional levels may promote features of aging,highlighting the importance of understanding the mechanisms that regulate L1 RNA levels. Here,we computationally identify new candidate regulators of L1 RNA levels,provide experimental evidence that candidate regulators influence L1 RNA levels,and demonstrate that genetic variants associated with differences in L1 RNA levels are co-associated with aging phenotypes. Our approach expands the toolkit that can be used to characterize transposable element regulation and highlights specific genes for further study. Importantly,our results reiterate the notion that L1 levels are linked with aging phenotypes and represent a potential therapeutic target for age-related decline.
View Publication
产品类型:
产品号#:
17899
产品名:
EasySep™ 死细胞去除 (Annexin V) 试剂盒
J. Tan et al. (Apr 2024)
The EMBO Journal 43 11
Limited oxygen in standard cell culture alters metabolism and function of differentiated cells
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic,but pericellular oxygen levels,which are affected by oxygen diffusivity and consumption,are rarely reported. Here,we provide evidence that several cell types in culture actually experience local hypoxia,with important implications for cell metabolism and function. We focused initially on adipocytes,as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions,cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria,lowered HIF1α activity,and resulted in widespread transcriptional rewiring. Functionally,adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli,recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages,hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types,and that considering pericellular oxygen improves the quality,reproducibility and translatability of culture models.
View Publication
产品类型:
产品号#:
05790
100-0483
100-0484
产品名:
BrainPhys™神经元培养基
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
K. M. Chen et al. (Apr 2024)
Frontiers in Immunology 15
Targeting PD-L1 in solid cancer with myeloid cells expressing a CAR-like immune receptor
Solid cancers Myeloid cells are prevalent in solid cancers,but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME),which hinders the effectiveness of cancer immunotherapies. Myeloid cells’ natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers,including tumor infiltration,tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1,which is often upregulated by solid cancers to evade immune responses. Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1,while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells,we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally,we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy’s effectiveness in vivo. Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1β. Moreover,CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors,infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Taken together,these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.
View Publication