DNA from Lactobacillus paragasseri SBT2055 Activates Plasmacytoid Dendritic Cells and Induces IFN-α via TLR9
Previously,we reported that Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and induces interferon alpha (IFN-α) in vitro. Our clinical trial suggested that LG2055 intake may enhance pDC activity,supporting immune maintenance and reducing subjective common cold symptoms. However,the precise mechanisms remain unclear. In this study,we investigated how LG2055 engages with pDCs to stimulate IFN-α production. We evaluated LG2055-induced pDC activation using flow cytometry,ELISA,and phagocytosis assays. Human peripheral blood mononuclear cells (PBMCs) were stimulated with LG2055 and its components to evaluate immune responses. An in vitro M cell model was used to examine LG2055 translocation. We found that DNA extracted from LG2055 activated pDCs and enhanced IFN-α production via Toll-like receptor 9 (TLR9). Phagocytosis assays demonstrated that LG2055 DNA was internalized by PBMC-derived pDCs,enabling TLR9-mediated signaling. Additionally,LG2055 translocated across M cells in vitro,suggesting potential transport into Peyer’s patches,where it may interact with pDCs. These findings demonstrate that intestinal LG2055 can translocate across M cells,interact with pDCs,and exert immune-stimulatory effects to enhance host antiviral immunity. This study provides mechanistic insight into how dietary components support immune health and could inform the development of novel functional foods or therapeutic strategies.
View Publication
产品类型:
产品号#:
17977
17977RF
产品名:
EasySep™人浆细胞样DC分选试剂盒
RoboSep™ 人浆细胞样DC分选试剂盒
(Aug 2025)
Cancer Immunology,Immunotherapy : CII 74 9
GPX4 is a key ferroptosis regulator orchestrating T cells and CAR-T-cells sensitivity to ferroptosis
Induction of ferroptosis,an iron-dependent form of regulated cell death,holds promise as a strategy to overcome tumor resistance to conventional therapies and enhance immunotherapy responses. However,while the susceptibility of tumor cells to ferroptosis is extensively studied,limited data exists on the vulnerability of immune cells to disturbed iron balance and lipid peroxidation. Here,we found that T-cell stimulation rewires iron and redox homeostasis and by increasing levels of reactive oxygen species and labile iron promotes lipid peroxidation and T-cells’ ferroptosis. Upon stimulation,we detected changes in the balance of ferroptosis-suppressive proteins,including decrease of GPX4. Subsequently,we identified GPX4 as a master regulator orchestrating T/CAR-T-cells’ sensitivity to ferroptosis and observed that GPX4 inhibitors impair CAR-T cells’ antitumor functions. Our study demonstrated differential GPX4 expression and diverse susceptibility to ferroptosis between CD4⁺ and CD8⁺ T cells. Among analyzed subsets of naïve,central memory (CM),effector memory (EM),and terminally differentiated effector memory (TEMRA),CD8⁺ EM and CD8⁺ TEMRA cells exhibited the highest sensitivity to ferroptosis. We also showed that ferroptosis limited the anti-tumor efficacy of CAR-T cells,while ferroptosis inhibition improved their therapeutic effect,both in vitro and in vivo. Our findings are not only important to understand vulnerabilities of CAR-T cells but may also hold particular significance for their therapeutic development. In this context,future anticancer therapies should be carefully designed to selectively induce the ferroptosis of tumor cells without impeding cytotoxic cells’ antitumor efficacy. Additionally,we postulate that promoting less differentiated phenotype of CAR-T cells should be exploited therapeutically to create CAR-T products characterized by decreased sensitivity to ferroptosis within tumor microenvironment.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00262-025-04133-w.
View Publication
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects communication,social interaction,and behavior. Calcium (Ca2+) signaling dysregulation has been frequently highlighted in genetic studies as a contributing factor to aberrant developmental processes in ASD. Herein,we used ASD and control induced pluripotent stem cells (iPSCs) to investigate transcriptomic and functional Ca2+ dynamics at various stages of differentiation to cortical neurons. Idiopathic ASD and control iPSC lines underwent the dual SMAD inhibition differentiation protocol to direct their fate toward cortical neurons. Samples from multiple time points along the course of differentiation were processed for bulk RNA sequencing,spanning the following sequential stages: the iPSC stage,neural induction (NI) stage,neurosphere (NSP) stage,and differentiated cortical neuron (Diff) stage. Our transcriptomic analyses suggested that the numbers of Ca2+ signaling-relevant differentially expressed genes between ASD and control samples were higher in the iPSC and Diff stages. Accordingly,samples from the iPSC and Diff stages were processed for Ca2+ imaging studies. Results revealed that iPSC-stage ASD samples displayed elevated maximum Ca2+ levels in response to ATP compared to controls. By contrast,in the Diff stage,ASD neurons showed reduced maximum Ca2+ levels in response to ATP but increased maximum Ca2+ levels in response to KCl and DHPG relative to controls. Considering the distinct functional signaling contexts of these stimuli,this differential profile of receptor- and ionophore-mediated Ca2+ response suggests that aberrant calcium homeostasis underlies the pathophysiology of ASD neurons. Our data provides functional evidence for Ca2+ signaling dysregulation during neurogenesis in idiopathic ASD.
View Publication
产品类型:
产品号#:
05990
产品名:
TeSR™-E8™
A. Mostofinejad et al. (Aug 2025)
PLOS Computational Biology 21 8
In silico modeling of directed differentiation of induced pluripotent stem cells to definitive endoderm
Differentiation of embryonic stem cells and induced pluripotent stem cells (iPSCs) into endoderm derivatives,including thyroid,thymus,lungs,liver,and pancreas,has broad implications for disease modeling and therapy. We utilize and expand a model development approach previously outlined by the authors to construct a model for the directed differentiation of iPSCs into definitive endoderm (DE). Assuming discrete intermediate stages in the differentiation process with a homogeneous population in each stage,three lineage models with two,three,and four populations and three growth models are constructed. Additionally,three models for error distribution are defined,resulting in a total of 27 models. Experimental data obtained in vitro are used for model calibration,model selection,and final validation. Model selection suggests that no transitory state during differentiation expresses the DE biomarkers CD117 and CD184,a finding corroborated by existing literature. Additionally,space-limited growth models,such as logistic and Gompertz growth,outperform exponential growth. Validation of the inferred model with leave-out data results in prediction errors of 26.4%. Using the inferred model,it is predicted that the optimal differentiation period is between 1.9 and 2.4 days,plating populations closer to 300 000 cells per well result in the highest yield efficiency,and that iPSC differentiation outpaces the DE proliferation as the main driver of the population dynamics. We also demonstrate that the model can predict the effect of growth modulators on cell population dynamics. Our model serves as a valuable tool for optimizing differentiation protocols,providing insights into developmental biology.
View Publication
产品类型:
产品号#:
05110
85850
85857
产品名:
STEMdiff™定型内胚层检测试剂盒
mTeSR™1
mTeSR™1
S. Zuo et al. (Jul 2024)
Nature Communications 15
C-JUN overexpressing CAR-T cells in acute myeloid leukemia: preclinical characterization and phase I trial
Chimeric antigen receptor (CAR) T cells show suboptimal efficacy in acute myeloid leukemia (AML). We find that CAR T cells exposed to myeloid leukemia show impaired activation and cytolytic function,accompanied by impaired antigen receptor downstream calcium,ZAP70,ERK,and C-JUN signaling,compared to those exposed to B-cell leukemia. These defects are caused in part by the high expression of CD155 by AML. Overexpressing C-JUN,but not other antigen receptor downstream components,maximally restores anti-tumor function. C-JUN overexpression increases costimulatory molecules and cytokines through reinvigoration of ERK or transcriptional activation,independent of anti-exhaustion. We conduct an open-label,non-randomized,single-arm,phase I trial of C-JUN-overexpressing CAR-T in AML ( NCT04835519 ) with safety and efficacy as primary and secondary endpoints,respectively. Of the four patients treated,one has grade 4 (dose-limiting toxicity) and three have grade 1–2 cytokine release syndrome. Two patients have no detectable bone marrow blasts and one patient has blast reduction after treatment. Thus,overexpressing C-JUN endows CAR-T efficacy in AML. Subject terms: Translational research,Leukaemia
View Publication
产品类型:
产品号#:
100-0784
100-0956
10971
10981
10991
产品名:
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ XF培养基
ImmunoCult™ 人CD3/CD28 T细胞激活剂
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
ImmunoCult™ 人CD3/CD28 T细胞激活剂
G. Y. Lee et al. (Apr 2025)
BMC Research Notes 18 2
Comprehensive single-cell RNA-sequencing study of Tollip deficiency effect in IL-13-stimulated human airway epithelial cells
Toll-interacting protein (Tollip) suppresses excessive pro-inflammatory signaling,but its function in airway epithelial responses to IL-13,a key mediator in allergic diseases,remains unclear. This study investigates Tollip knockdown (TKD) effects in primary human airway epithelial cells using single-cell RNA sequencing,providing the first single-cell analysis of TKD and the first exploring its interaction with IL-13. IL-13 treatment upregulated key genes,including SPDEF,MUC5AC,POSTN,ALOX15,and CCL26,confirming IL-13’s effects and validating our methods. IL-13 reduced TNF-α signaling and epithelial-mesenchymal transition in certain cell types,suggesting a dual role in promoting type 2 inflammation while suppressing Th1-driven inflammation. Tollip deficiency alone significantly amplified TNF-α signaling and inflammatory pathways in goblet,club,and suprabasal cells. Comparisons between TKDIL13 vs IL13 and TKD vs CTR revealed that IL-13 does not substantially alter Tollip deficiency response in most cell types,reinforcing findings in TKD vs CTR. Tollip deficiency alters the response to IL-13 in a cell-type-specific manner,strongly downregulating TNF-α signaling in goblet cells but only weakly in basal and club cells. Tollip deficiency enhances IL-13’s suppression of Th1 inflammatory responses in goblet cells. These novel insights in Tollip-IL-13 interactions offer potential therapeutic targets for asthma and related diseases. The online version contains supplementary material available at 10.1186/s13104-025-07255-7.
View Publication
Wang Y et al. (MAY 2005)
Life sciences 77 1 39--51
The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase.
Chalcones are precursor compounds for flavonoid synthesis in plants,and they can also be synthesized in laboratory. Previous study has documented some of the pharmacological applications of these compounds. Estrogen has long been associated with the initiation and promotion of breast cancer. Inhibiting estrogen synthesis can be effective in the prevention and treatment of the disease. Since most breast cancers received estrogen supplied from local tissues,we employed a breast cancer cell line expressing aromatase to screen for the inhibitory potentials of five hydroxychalcones,i.e. 2-hydroxychalcone,2'-hydroxychalcone,4-hydroxychalcone,4,2',4'-trihydroxy-chalcone (isoquiritigenin),3,4,2',4'-tetrahydroxychalcone (butein). In the preliminary results,butein was found to be the strongest inhibitor among the tested compounds,and its IC(50) value was 3.75 microM. Subsequent enzyme kinetic study revealed that butein acted on aromatase with a mixed type of inhibition and the K(i) value was determined to be 0.32 microM. Cell proliferation assay indicated that the cell number increased by 10 nM-testosterone treatment was significantly reduced by 5 microM butein,and the administration of flutamide could not reverse the effect. The present study illustrated that butein was an aromatase inhibitor and a potential natural alternative for the chemoprevention or therapy of breast cancer.
View Publication
产品类型:
产品号#:
73462
73464
产品名:
Butein
Walker TL et al. (MAY 2008)
The Journal of neuroscience : the official journal of the Society for Neuroscience 28 20 5240--7
Latent stem and progenitor cells in the hippocampus are activated by neural excitation.
The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly,however,studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here,we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly,however,depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (textgreater 250 microm in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast,the same conditions led to the opposite effect in the other main neurogenic region of the brain,the subventricular zone,in which neurosphere numbers decreased by approximately 40% in response to depolarizing levels of KCl. Most importantly,we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus,which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal,defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Ammirati E et al. (DEC 2008)
Arteriosclerosis,thrombosis,and vascular biology 28 12 2305--11
Expansion of T-cell receptor zeta dim effector T cells in acute coronary syndromes.
OBJECTIVE: The T-cell receptor zeta (TCR zeta)-chain is a master sensor and regulator of lymphocyte responses. Loss of TCR zeta-chain expression has been documented during infectious and inflammatory diseases and defines a population of effector T cells (TCR zeta(dim) T cells) that migrate to inflamed tissues. We assessed the expression and functional correlates of circulating TCR zeta(dim) T cells in coronary artery disease. METHODS AND RESULTS: We examined the expression of TCR zeta-chain by flow cytometry in 140 subjects. Increased peripheral blood CD4(+) TCR zeta(dim) T cells were found in patients with acute coronary syndromes (ACS,n=66; median 5.3%,interquartile 2.6 to 9.1% of total CD4(+) T cells; Ptextless0.0001) compared to chronic stable angina (CSA,n=32; 1.6%; 1.0 to 4.1%) and controls (n=42; 1.5%; 0.5 to 2.9%). Such increase was significantly greater in ACS patients with elevated levels of C-reactive protein,and it persisted after the acute event. Moreover,TCR zeta(dim) cells were also more represented within CD8(+) T cell,NK,and CD4(+)CD28(null) T cell subsets in ACS compared to CSA and controls. Finally,CD4(+) and CD8(+) TCR zeta(dim) T cells isolated from ACS displayed an enhanced transendothelial migratory capacity. CONCLUSIONS: TCR zeta(dim) T cells,an effector T-cell subset with transendothelial migratory ability,are increased in ACS,and may be implicated in coronary instability.
View Publication
产品类型:
产品号#:
19051
19051RF
产品名:
EasySep™人T细胞富集试剂盒
RoboSep™ 人T细胞富集试剂盒含滤芯吸头
Mostert B et al. (AUG 2009)
Cancer treatment reviews 35 5 463--74
Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer.
The enumeration of circulating tumor cells has long been regarded as an attractive diagnostic tool,as circulating tumor cells are thought to reflect aggressiveness of the tumor and may assist in therapeutic decisions in patients with solid malignancies. However,implementation of this assay into clinical routine has been cumbersome,as a validated test was not available until recently. Circulating tumor cells are rare events which can be detected specifically only by using a combination of surface and intracellular markers,and only recently a number of technical advances have made their reliable detection possible. Most of these new techniques rely on a combination of an enrichment and a detection step. This review addresses the assays that have been described so far in the literature,including the enrichment and detection steps and the markers used in these assays. We have focused on breast cancer as most clinical studies on CTC detection so far have been done in these patients.
View Publication