Bhat-Nakshatri P et al. ( 2013)
Scientific reports 3 2530
Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity.
Recently developed genomics-based tools are allowing repositioning of Food and Drug Administration (FDA)-approved drugs as cancer treatments,which were employed to identify drugs that target cancer stem cells (CSCs) of breast cancer. Gene expression datasets of CSCs from six studies were subjected to connectivity map to identify drugs that may ameliorate gene expression patterns unique to CSCs. All-trans retinoic acid (ATRA) was negatively connected with gene expression in CSCs. ATRA reduced mammosphere-forming ability of a subset of breast cancer cells,which correlated with induction of apoptosis,reduced expression of SOX2 but elevated expression of its antagonist CDX2. SOX2/CDX2 ratio had prognostic relevance in CSC-enriched breast cancers. K-ras mutant breast cancer cell line enriched for CSCs was resistant to ATRA,which was reversed by MAP kinase inhibitors. Thus,ATRA alone or in combination can be tested for efficacy using SOX2,CDX2,and K-ras mutation/MAPK activation status as biomarkers of response.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Wang J et al. (JAN 2014)
Journal of Biological Chemistry 289 4 2384--2395
Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
It has been recently reported that the regulatory circuitry formed by OCT4,miR-302,and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C,a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs,directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression,decreased BMP signaling,and enhanced TGF$\$ JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown,but not the control,cells within 3 days,accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together,our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Khalid O et al. (MAY 2014)
Stem Cell Research 12 3 791--806
Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells
Stem cells,especially human embryonic stem cells (hESCs),are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol,EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs,we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs,particularly those associated with molecular pathways for metabolic processes,oxidative stress,and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts,with methylation on the promoter regions of chromosomes 2,16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes,which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis. ?? 2014 Published by Elsevier B.V.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
ACCUTASE™
Gilpin SE et al. (NOV 2014)
The Annals of thoracic surgery 98 5 1721--------9; discussion 1729
Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix.
BACKGROUND Whole-lung scaffolds can be created by perfusion decellularization of cadaveric donor lungs. The resulting matrices can then be recellularized to regenerate functional organs. This study evaluated the capacity of acellular lung scaffolds to support recellularization with lung progenitors derived from human induced pluripotent stem cells (iPSCs). METHODS Whole rat and human lungs were decellularized by constant-pressure perfusion with 0.1% sodium dodecyl sulfate solution. Resulting lung scaffolds were cryosectioned into slices or left intact. Human iPSCs were differentiated to definitive endoderm,anteriorized to a foregut fate,and then ventralized to a population expressing NK2 homeobox 1 (Nkx2.1). Cells were seeded onto slices and whole lungs,which were maintained under constant perfusion biomimetic culture. Lineage specification was assessed by quantitative polymerase chain reaction and immunofluorescent staining. Regenerated left lungs were transplanted in an orthotopic position. RESULTS Activin-A treatment,followed by transforming growth factor-$\$,induced differentiation of human iPSCs to anterior foregut endoderm as confirmed by forkhead box protein A2 (FOXA2),SRY (Sex Determining Region Y)-Box 17 (SOX17),and SOX2 expression. Cells cultured on decellularized lung slices demonstrated proliferation and lineage commitment after 5 days. Cells expressing Nkx2.1 were identified at 40% to 60% efficiency. Within whole-lung scaffolds and under perfusion culture,cells further upregulated Nkx2.1 expression. After orthotopic transplantation,grafts were perfused and ventilated by host vasculature and airways. CONCLUSIONS Decellularized lung matrix supports the culture and lineage commitment of human iPSC-derived lung progenitor cells. Whole-organ scaffolds and biomimetic culture enable coseeding of iPSC-derived endothelial and epithelial progenitors and enhance early lung fate. Orthotopic transplantation may enable further in vivo graft maturation.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
09500
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
BIT 9500血清替代物
mTeSR™1
mTeSR™1
ACCUTASE™
Ong Q et al. ( 2015)
ACS chemical neuroscience 6 1 130--137
U0126 protects cells against oxidative stress independent of its function as a MEK inhibitor.
U0126 is a potent and selective inhibitor of MEK1 and MEK2 kinases. It has been widely used as an inhibitor for the Ras/Raf/MEK/ERK signaling pathway with over 5000 references on the NCBI PubMed database. In particular,U0126 has been used in a number of studies to show that inhibition of the Raf/MEK/ERK pathway protects neuronal cells against oxidative stress. Here,we report that U0126 can function as an antioxidant that protects PC12 cells against a number of different oxidative-stress inducers. This protective effect of U0126 is independent of its function as a MEK inhibitor,as several other MEK inhibitors failed to show similar protective effects. U0126 reduces reactive oxygen species (ROS) in cells. We further demonstrate that U0126 is a direct ROS scavenger in vitro,and the oxidation products of U0126 exhibit fluorescence. Our finding that U0126 is a strong antioxidant signals caution for its future usage as a MEK inhibitor and for interpreting some previous results.
View Publication
产品类型:
产品号#:
73522
73524
产品名:
U-0126
Hou TZ et al. ( 2015)
The Journal of Immunology 194 5 2148--2159
A Transendocytosis Model of CTLA-4 Function Predicts Its Suppressive Behavior on Regulatory T Cells
Manipulation of the CD28/CTLA-4 pathway is at the heart of a number of immunomodulatory approaches used in both autoimmunity and cancer. Although it is clear that CTLA-4 is a critical regulator of T cell responses,the immunological contexts in which CTLA-4 controls immune responses are not well defined. In this study,we show that whereas CD80/CD86-dependent activation of resting human T cells caused extensive T cell proliferation and robust CTLA-4 expression,in this context CTLA-4 blocking Abs had no impact on the response. In contrast,in settings where CTLA-4(+) cells were present as regulators
View Publication
产品类型:
产品号#:
18062
18062RF
17951
17951RF
19155
19155RF
19232
19232RF
19052
19052RF
19059
19059RF
100-0695
产品名:
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
EasySep™ 人CD4+CD127lowCD49d-调节性T细胞富集试剂盒
RoboSep™ CD4+ CD127low CD49d-调节性T细胞富集试剂盒
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人单核细胞富集试剂盒
RoboSep™ 人单核细胞富集试剂盒含滤芯吸头
EasySep™人T细胞分选试剂盒
Tafaleng EN et al. (JUL 2015)
Hepatology 62 1 147--157
Induced pluripotent stem cells model personalized variations in liver disease resulting from $\$1-antitrypsin deficiency.
UNLABELLED In the classical form of $\$1-antitrypsin deficiency (ATD),aberrant intracellular accumulation of misfolded mutant $\$1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function,proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Maricato JT et al. ( 2015)
PloS One 10 4 e0119234
Epigenetic Modulations in Activated Cells Early after HIV-1 Infection and Their Possible Functional Consequences
Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either,replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array,we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition,activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2,IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely,based on epigenetic markers studied here,non-stimulated cells infected by HIV-1,showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover,non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these observations,it is possible to speculate that the outcome of viral infections may be influenced by the cellular activation status at the moment of infection.
View Publication
产品类型:
产品号#:
18052
18052RF
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
D.-J. Fu et al. (jan 2020)
Nature communications 11 1 84
Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5-CD44+ cells.
Areas of a junction between two types of epithelia are known to be cancer-prone in many organ systems. However,mechanisms for preferential malignant transformation at the junction areas remain insufficiently elucidated. Here we report that inactivation of tumor suppressor genes Trp53 and Rb1 in the gastric squamous-columnar junction (SCJ) epithelium results in preferential formation of metastatic poorly differentiated neoplasms,which are similar to human gastroesophageal carcinoma. Unlike transformation-resistant antral cells,SCJ cells contain a highly proliferative pool of immature Lgr5-CD44+ cells,which are prone to transformation in organoid assays,comprise early dysplastic lesions,and constitute up to 30{\%} of all neoplastic cells. CD44 ligand osteopontin (OPN) is preferentially expressed in and promotes organoid formation ability and transformation of the SCJ glandular epithelium. OPN and CD44 overexpression correlate with the worst prognosis of human gastroesophageal carcinoma. Thus,detection and selective targeting of the active OPN-CD44 pathway may have direct clinical relevance.
View Publication
产品类型:
产品号#:
05513
产品名:
MesenCult™ 扩增试剂盒 (小鼠)
S. Rajendran et al. ( 2019)
Frontiers in oncology 9 945
Development of a Bispecific Antibody Targeting CD30 and CD137 on Hodgkin and Reed-Sternberg Cells.
Hodgkin Lymphoma (HL) is a malignancy that frequently affects young adults. Although,there are effective treatments not every patient responds,necessitating the development of novel therapeutic approaches,especially for relapsed and refractory cases. The two TNF receptor family members CD30 and CD137 are expressed on Hodgkin and Reed Sternberg (HRS) cells,the malignant cells in HL. We found that this co-expression is specific for HRS cells. Based on this discovery we developed a bispecific antibody that binds preferentially to the CD30,CD137-double positive HRS cells. The CD30,CD137 bispecific antibody gets internalized into HRS cells opening up the possibility to use it as a carrier for a toxin. This antibody also induces antibody-dependent,cell-mediated cytotoxicity in CD30,CD137-double positive HRS cells. The enhances specificity of the CD30,CD137 bispecific antibody to HRS cells makes it a promising candidate for development as a novel HL treatment.
View Publication
CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis
Autoimmune uveitis is a leading cause of severe vision loss,and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq,RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU),revealing that EAU causes broad retinal neuron degeneration and marker downregulation,and that Müller glia may act as antigen-presenting cells. Moreover,EAU immune response is primarily driven by Th1 cells,and results in dramatic upregulation of CC chemokines,especially CCL5,in the EAU retina. Accordingly,overexpression of CCR5,a CCL5 receptor,in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU,by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together,our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-024-03134-3.
View Publication