W. Zhang et al. (dec 2020)
Bioactive materials 5 4 832--843
An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration.
Endogenous repair of osteochondral defect is usually limited by the insufficient number of cells in the early stage and incomplete cell differentiation in the later stage. The development of drug delivery systems for sequential release of pro-migratory and pro-chondrogenic molecules to induce endogenous bone marrow-derived mesenchymal stem cells (BMSCs) recruitment and chondrogenic differentiation is highly desirable for in situ osteochondral regeneration. In this study,a novel,all-silk-derived sequential delivery system was fabricated by incorporating the tunable drug-loaded silk fibroin (SF) nanospheres into a SF porous matrix. The loading efficiency and release kinetics of biomolecules depended on the initial SF/polyvinyl alcohol (PVA) concentrations (0.2{\%},1{\%} and 5{\%}) of the nanospheres,as well as the hydrophobicity of the loaded molecules,resulting in controllable and programmed delivery profiles. Our findings indicated that the 5{\%} nanosphere-incorporated matrix showed a rapid release of E7 peptide during the first 120 h,whereas the 0.2{\%} nanosphere-incorporated matrix provided a slow and sustained release of Kartogenin (KGN) longer than 30 days. During in vitro culture of BMSCs,this functional SF matrix incorporated with E7/KGN nanospheres showed good biocompatibility,as well as enhanced BMSCs migration and chondrogenic differentiation through the release of E7 and KGN. Furthermore,when implanted into rabbit osteochondral defect,the SF nanosphere matrix with sequential E7/KGN release promoted the regeneration of both cartilage and subchondral bone. This work not only provided a novel all-silk-derived drug delivery system for sequential release of molecules,but also a functional tissue-engineered scaffold for osteochondral regeneration.
View Publication
产品类型:
产品号#:
05455
产品名:
MesenCult™-ACF软骨细胞分化试剂盒
Liu S et al. (JAN 2011)
Cancer research 71 2 614--24
Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks.
We have used in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSC) and bone marrow-derived mesenchymal stem cells (MSC). We show that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice,labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerated tumor growth by increasing the breast CSC population. With immunochemistry,we identified MSC-CSC niches in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow-derived MSCs may accelerate human breast tumor growth by generating cytokine networks that regulate the CSC population.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Wognum AW et al. (MAR 1990)
Experimental hematology 18 3 228--33
Immunochemical analysis of monoclonal antibodies to human erythropoietin.
We recently reported the development of three monoclonal antibodies (MoAbs) to biologically active human erythropoietin (Ep). In the present study,we investigated the epitope specificity of these three antibodies,as well as their reactivity with Eps derived from species other than man. All three antibodies reacted with the Ep polypeptide itself,rather than with its carbohydrate moieties. Moreover,all three antibodies recognized separate nonoverlapping epitopes. Further studies with reduced/alkylated Ep and with sodium dodecyl sulfate-denatured Ep suggested that two of the MoAbs,anti-Ep-2 and anti-Ep-16,were specific for conformational,nonlinear determinants on the Ep molecule,whereas the third MoAb,anti-Ep-26,appeared to recognize a linear epitope. However,anti-Ep-26 did not react with synthetic peptides representing the 26 amino-,the 99-129 mid-region,or the 10 carboxy-terminal residues of Ep,nor with trypsin-,chymotrypsin-,or V8 protease-digested fragments of Ep. When tested with Ep from different species,the neutralizing capabilities of the three MoAbs were clearly different. Comparing their effectiveness against baboon,ovine and murine Ep,antibody 2 was most effective at neutralizing baboon Ep,antibody 16 was most effective against murine Ep,and antibody 26 showed little reactivity with any of these nonhuman Eps. Because these various Eps readily stimulate across species barriers,it is likely that the receptor binding domain on Ep has remained relatively conserved during evolution. Our results therefore suggest that the neutralizing capacity of our three anti-Ep MoAbs is caused not by binding directly to the Ep receptor binding domain on Ep,but by binding to distant regions,causing conformational changes in Ep,or by binding to regions close to the binding site,steric hindrance.
View Publication
产品类型:
产品号#:
01630
产品名:
Erythropoietin (EPO) ELISA试剂盒
Cantù et al. (MAR 2011)
Blood 117 13 3669--79
Sox6 enhances erythroid differentiation in human erythroid progenitors.
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors,which control cell-fate specification of many cell types. Here,we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and,despite their leukemic origin,died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets,we found SOCS3 (suppressor of cytokine signaling-3),a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element,which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6,which demonstrates that SOCS3 is a relevant Sox6 effector.
View Publication
产品类型:
产品号#:
09600
09650
84434
84444
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Yang L et al. (OCT 2013)
Nucleic Acids Research 41 19 9049--9061
Optimization of scarless human stem cell genome editing
Efficient strategies for precise genome editing in human-induced pluripotent cells (hiPSCs) will enable sophisticated genome engineering for research and clinical purposes. The development of programmable sequence-specific nucleases such as Transcription Activator-Like Effectors Nucleases (TALENs) and Cas9-gRNA allows genetic modifications to be made more efficiently at targeted sites of interest. However,many opportunities remain to optimize these tools and to enlarge their spheres of application. We present several improvements: First,we developed functional re-coded TALEs (reTALEs),which not only enable simple one-pot TALE synthesis but also allow TALE-based applications to be performed using lentiviral vectors. We then compared genome-editing efficiencies in hiPSCs mediated by 15 pairs of reTALENs and Cas9-gRNA targeting CCR5 and optimized ssODN design in conjunction with both methods for introducing specific mutations. We found Cas9-gRNA achieved 7-8× higher non-homologous end joining efficiencies (3%) than reTALENs (0.4%) and moderately superior homology-directed repair efficiencies (1.0 versus 0.6%) when combined with ssODN donors in hiPSCs. Using the optimal design,we demonstrated a streamlined process to generated seamlessly genome corrected hiPSCs within 3 weeks.
View Publication
Griffiths RE et al. (DEC 2007)
Blood 110 13 4518--25
Normal prion protein trafficking in cultured human erythroblasts.
Normal prion protein (PrP(c)),an essential substrate for development of prion disease,is widely distributed in hematopoietic cells. Recent evidence that variant Creutzfeldt-Jakob disease can be transmitted by transfusion of red cell preparations has highlighted the need for a greater understanding of the biology of PrP(c) in blood and blood-forming tissues. Here,we show that in contrast to another glycosylphosphoinositol-anchored protein CD59,PrP(c) at the cell surface of cultured human erythroblasts is rapidly internalized through the endosomal pathway,where it colocalizes with the tetraspanin CD63. In the plasma membrane,PrP(c) colocalizes with the tetraspanin CD81. Cross-linking with anti-PrP(c) or anti-CD81 causes clustering of PrP(c) and CD81,suggesting they can share the same microdomain. These data are consistent with a role for tetraspanin-enriched microdomains in trafficking of PrP(c). These results,when taken together with recent evidence that exosomes released from cells as a result of endosomal-mediated recycling to the plasma membrane contain prion infectivity,provide a pathway for the propagation of prion diseases.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Mandal PK and Rossi DJ (MAR 2013)
Nature protocols 8 3 568--82
Reprogramming human fibroblasts to pluripotency using modified mRNA
Induced pluripotent stem (iPS) cells hold the potential to revolutionize regenerative medicine through their capacity to generate cells of diverse lineages for future patient-specific cell-based therapies. To facilitate the transition of iPS cells to clinical practice,a variety of technologies have been developed for transgene-free pluripotency reprogramming. We recently reported efficient iPS cell generation from human fibroblasts using synthetic modified mRNAs. Here we describe a stepwise protocol for the generation of modified mRNA-derived iPS cells from primary human fibroblasts,focusing on the critical parameters including medium choice,quality control,and optimization steps needed for synthesizing modified mRNAs encoding reprogramming factors and introducing these into cells over the course of 2-3 weeks to ensure successful reprogramming. The protocol described herein is for reprogramming of human fibroblasts to pluripotency; however,the properties of modified mRNA make it a powerful platform for protein expression,which has broad applicability in directed differentiation,cell fate specification and therapeutic applications.
View Publication
产品类型:
产品号#:
05854
05855
05850
05857
05870
05875
36254
85850
85857
85870
85875
产品名:
mFreSR™
mFreSR™
DMEM/F-12 with 15 mM HEPES
mTeSR™1
mTeSR™1
N. J. Giridhar et al. (Sep 2025)
Biology Open 14 9
Temporal transcriptomic profiling of human three-dimensional neuromuscular co-cultures
The principal organization of mammalian neuromuscular junctions (NMJs) shares essential features across species. However,human NMJs (hNMJs) exhibit distinct structural and physiological properties. While recent advances in stem-cell-based systems have significantly improved in vitro modeling of hNMJs,the extent to which these models recapitulate in vivo development remains unclear. Here,we performed temporal transcriptomic analysis of human three-dimensional (3D) neuromuscular co-cultures,composed of iPSC-derived motoneurons and skeletal muscle engineered from primary myoblasts. We found that the expression pattern follows a temporally coordinated gene expression program underlying NMJ maturation. The model recapitulates transcriptional features of NMJ development,including early myoblast fusion and presynaptic development,followed by a late-stage upregulation of postsynaptic markers and embryonic AChR subunits. Importantly,comparable transcriptional dynamics across two independent hiPSC lines confirm the reproducibility and robustness of this system. This study confirms on a transcriptional level that human 3D neuromuscular co-cultures are a robust and physiologically relevant model for investigating hNMJ development and function.
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
Gallego MJ et al. (JAN 2010)
Stem cell research & therapy 1 4 28
The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes.
INTRODUCTION: The physiological signals that direct the division and differentiation of the zygote to form a blastocyst,and subsequent embryonic stem cell division and differentiation during early embryogenesis,are unknown. Although a number of growth factors,including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst,it is not known whether these growth factors directly signal human embryonic stem cells (hESCs).backslashnbackslashnMETHODS: Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB's; akin to blastulation) and neuroectodermal rosettes (akin to neurulation).backslashnbackslashnRESULTS: We found that hCG promotes the division of hESCs and their differentiation into EB's and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation,an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A,and treatment of hESC colonies with P4 induces neurulation,as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB's and rosettes.backslashnbackslashnCONCLUSIONS: Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Keskin DB et al. (FEB 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 9 3378--83
TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells.
During pregnancy the uterine decidua is populated by large numbers of natural killer (NK) cells with a phenotype CD56(superbright)CD16(-)CD9(+)KIR(+) distinct from both subsets of peripheral blood NK cells. Culture of highly purified CD16(+)CD9(-) peripheral blood NK cells in medium containing TGFbeta1 resulted in a transition to CD16(-)CD9(+) NK cells resembling decidual NK cells. Decidual stromal cells,when isolated and cultured in vitro,were found to produce TGFbeta1. Incubation of peripheral blood NK cells with conditioned medium from decidual stromal cells mirrored the effects of TGFbeta1. Similar changes may occur upon NK cell entry into the decidua or other tissues expressing substantial TGFbeta. In addition,Lin(-)CD34(+)CD45(+) hematopoietic stem/progenitor cells could be isolated from decidual tissue. These progenitors also produced NK cells when cultured in conditioned medium from decidual stromal cells supplemented with IL-15 and stem cell factor.
View Publication