Denè et al. (SEP 2013)
Clinical chemistry 59 9 1384--92
Capture of viable circulating tumor cells in the liver of colorectal cancer patients.
BACKGROUND The incidence and number of circulating tumor cells (CTCs) in the peripheral blood of colorectal cancer patients are lower than in other cancer types,which may point to a particular biology of colorectal cancer affecting CTC detection. METHODS We detected CTCs in the peripheral and mesenteric blood of colorectal cancer patients by use of 2 independent technologies on the basis of different biological properties of colon cancer cells. Seventy-five patients diagnosed with localized (M0,n = 60) and metastatic (M1,n = 15) colorectal cancer were included. Peripheral and mesenteric blood samples were collected before tumor resection. We performed CTC enumeration with an EpCAM-independent enrichment method followed by the Epispot assay that detected only viable CK19-releasing CTCs. In parallel,we used the FDA-cleared EpCAM-dependent CellSearch® as the reference method. RESULTS The enumeration of CK19-releasing cells by the CK19-Epispot assay revealed viable CTCs in 27 of 41 (65.9%) and 41 of 74 (55.4%) (P = 0.04) patients in mesenteric and peripheral blood,respectively,whereas CellSearch detected CTCs in 19 of 34 (55.9%) and 20 of 69 (29.0%) (P = 0.0046) patients. In mesenteric blood,medians of 4 (range 0-247) and 2.7 CTCs (range 0-286) were found with Epispot and CellSearch (P = 0.2),respectively,whereas in peripheral blood,Epispot and CellSearch detected a median of 1.2 (range 0-92) and 0 CTCs (range 0-147) (P = 0.002). CONCLUSIONS A considerable portion of viable CTCs detectable by the Epispot assay are trapped in the liver as the first filter organ in CRC patients.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
Koehler KR et al. (AUG 2013)
Nature 500 7461 217--21
Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture.
The inner ear contains sensory epithelia that detect head movements,gravity and sound. It is unclear how to develop these sensory epithelia from pluripotent stem cells,a process that will be critical for modelling inner ear disorders or developing cell-based therapies for profound hearing loss and balance disorders. So far,attempts to derive inner ear mechanosensitive hair cells and sensory neurons have resulted in inefficient or incomplete phenotypic conversion of stem cells into inner-ear-like cells. A key insight lacking from these previous studies is the importance of the non-neural and preplacodal ectoderm,two critical precursors during inner ear development. Here we report the stepwise differentiation of inner ear sensory epithelia from mouse embryonic stem cells (ESCs) in three-dimensional culture. We show that by recapitulating in vivo development with precise temporal control of signalling pathways,ESC aggregates transform sequentially into non-neural,preplacodal and otic-placode-like epithelia. Notably,in a self-organized process that mimics normal development,vesicles containing prosensory cells emerge from the presumptive otic placodes and give rise to hair cells bearing stereocilia bundles and a kinocilium. Moreover,these stem-cell-derived hair cells exhibit functional properties of native mechanosensitive hair cells and form specialized synapses with sensory neurons that have also arisen from ESCs in the culture. Finally,we demonstrate how these vesicles are structurally and biochemically comparable to developing vestibular end organs. Our data thus establish a new in vitro model of inner ear differentiation that can be used to gain deeper insight into inner ear development and disorder.
View Publication
产品类型:
产品号#:
72142
72144
产品名:
Tan H-K et al. (MAY 2014)
Stem cells translational medicine 3 5 586--98
Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased,genetic,and phenotypic representations. In this study,we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
09600
09650
85850
85857
85870
85875
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
mTeSR™1
mTeSR™1
Beer PA et al. (JAN 2015)
Blood 125 3 504--15
Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression.
Without effective therapy,chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized,but biologically poorly characterized,accelerated phase (AP). Here,we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1-negative acute myeloid leukemia blasts,which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML,we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients' CD34(+) cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML,including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34(+) CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients.
View Publication
产品类型:
产品号#:
18056
18056RF
产品名:
Tadeu AMB et al. (APR 2015)
PLoS ONE 10 4 e0122493
Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells
In recent years,several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here,we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore,we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly,these genes are also associated with skin disorders and ectodermal defects,providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07913
85850
85857
85870
85875
产品名:
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
Fu X et al. (FEB 2016)
Plos One 11 2 e0148819
High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However,insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs),which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore,we investigated the effects of sodium fluoride (NaF) on the proliferation,differentiation and viability of H9 hESCs. For the first time,we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology,mitochondrial membrane potential (MMP),caspase activities,cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway,coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a pJNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07920
85850
85857
85870
85875
07922
产品名:
ACCUTASE™
mTeSR™1
mTeSR™1
ACCUTASE™
M. D. Cheung et al. (jan 2022)
Kidney360 3 1 28--36
Single-Cell RNA Sequencing of Urinary Cells Reveals Distinct Cellular Diversity in COVID-19-Associated AKI.
BACKGROUND AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here,we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. METHODS We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. RESULTS Analysis of 30,076 cells revealed a diverse array of cell types,most of which were kidney,urothelial,and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably,in one patient,we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. CONCLUSIONS We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally,we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.
View Publication
产品类型:
产品号#:
18000
产品名:
EasySep™磁极
E. Erikson et al. (may 2022)
Cellular immunology 375 104516
Impaired plasma cell differentiation associates with increased oxidative metabolism in I$\kappa$BNS-deficient B cells.
Mutations causing loss of the NF-$\kappa$B regulator I$\kappa$BNS,result in impaired development of innate-like B cells and defective plasma cell (PC) differentiation. Since productive PC differentiation requires B cell metabolic reprogramming,we sought to investigate processes important for this transition using the bumble mouse strain,deficient for I$\kappa$BNS. We report that LPS-activated bumble B cells exhibited elevated mTOR activation levels,mitochondrial accumulation,increased OXPHOS and mROS production,along with a reduced capacity for autophagy,compared to wildtype B cells. Overall,our results demonstrate that PC differentiation in the absence of I$\kappa$BNS is characterized by excessive activation during early rounds of B cell division,increased mitochondrial metabolism and decreased autophagic capacity,thus improving our understanding of the role of I$\kappa$BNS in PC differentiation.
View Publication
Glutamine promotes human CD8 + T cells and counteracts imiquimod-induced T cell hyporesponsiveness
T cells protect tissues from cancer. Although investigations in mice showed that amino acids (AA) critically regulate T cell immunity,this remains poorly understood in humans. Here,we describe the AA composition of interstitial fluids in keratinocyte-derived skin cancers (KDSCs) and study the effect of AA on T cells using models of primary human cells and tissues. Gln contributed to ∼15% of interstitial AAs and promoted interferon gamma (IFN-γ),but not granzyme B (GzB) expression,in CD8 + T cells. Furthermore,the Toll-like receptor 7 agonist imiquimod (IMQ),a common treatment for KDSCs,down-regulated the metabolic gatekeepers c-MYC and mTORC1,as well as the AA transporter ASCT2 and intracellular Gln,Asn,Ala,and Asp in T cells. Reduced proliferation and IFN-γ expression,yet increased GzB,paralleled IMQ effects on AA. Finally,Gln was sufficient to promote IFN-γ-production in IMQ-treated T cells. Our findings indicate that Gln metabolism can be harnessed for treating KDSCs. Subject areas: Dermatology,Immunology
View Publication
产品类型:
产品号#:
100-0785
10970
10990
产品名:
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
ImmunoCult™ 人CD3/CD28/CD2 T细胞激活剂
L. Castagnoli et al. (Jan 2025)
Journal of Experimental & Clinical Cancer Research : CR 44
CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer
Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness,therapy resistance and cancer stemness. In particular,HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context,the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear. In this study,we aimed to elucidate whether enhanced CD36 in mesenchymal HER2 + cancer stem cells (CSCs) is directly involved in anti-HER2 treatment refractoriness in HER2 + BC and to design future metabolism-based approaches targeting both FA reprogramming and the “root” of cancer. Molecular,biological and functional characterization of CD36-mediated FA uptake was investigated in HER2 + BC patients,cell lines,epithelial and mesenchymal CSCs. Cell proliferation was analyzed by SRB assay upon treatment with lapatinib,CD36 inhibitor,or Wnt antagonist/agonist. Engineered cell models were generated via lentivirus infection and transient silencing. CSC-like properties and tumorigenesis of HER2 + BC cells with or without CD36 depletion were examined by mammosphere forming efficiency assay,flow cytometry,cell sorting,ALDH activity assay and xenograft mouse model. FA uptake was examined by flow cytometry with FA BODIPY FL C16. Intratumor expression of CSC subsets was evaluated via multiplex immunostaining and immunolocalization analysis. Molecular data demonstrated that CD36 is significantly upmodulated on treatment in therapy resistant HER2 + BC patients and its expression levels in BC cells is correlated with FA uptake. We provided evidence of a consistent enrichment of CD36 in HER2 + epithelial-mesenchymal transition (EMT)-like CSCs from all tested resistant cell models that mechanistically occurs via Wnt signaling pathway activation. Consistently,both in vitro and in vivo dual blockade of CD36 and HER2 increased the anti-CSC efficacy of anti-HER2 drugs favoring the transition of the therapy resistant mesenchymal CSCs into therapy-sensitive mesenchymal-epithelial transition (MET)-like epithelial state. In addition,expression of CD36 in intratumor HER2 + mesenchymal CSCs is significantly associated with resistance to trastuzumab in HER2 + BC patients. These results support the metabolo-oncogenic nature of CD36-mediated FA uptake in HER2 + therapy-refractory BC. Our study provides evidence that targeting CD36 might be an effective metabolic therapeutic strategy in the treatment of this malignancy. The online version contains supplementary material available at 10.1186/s13046-025-03276-z.
View Publication
产品类型:
产品号#:
01702
产品名:
ALDEFLUOR™测定缓冲液
Q. Li et al. ( 2018)
Scientific reports 8 1 3531
Scalable Culturing of Primary Human Glioblastoma Tumor-Initiating Cells with a Cell-Friendly Culture System.
Glioblastoma is the most aggressive and deadly brain cancer. There is growing interest to develop drugs that specifically target to glioblastoma tumor-initiating cells (TICs). However,the cost-effective production of large numbers of high quality glioblastoma TICs for drug discovery with current cell culturing technologies remains very challenging. Here,we report a new method that cultures glioblastoma TICs in microscale alginate hydrogel tubes (or AlgTubes). The AlgTubes allowed long-term culturing ({\~{}}50 days,10 passages) of glioblastoma TICs with high growth rate ({\~{}}700-fold expansion/14 days),high cell viability and high volumetric yield ({\~{}}3.0 × 108 cells/mL) without losing the stem cell properties,all offered large advancements over current culturing methods. This method can be applied for the scalable production of glioblastoma TICs at affordable cost for drug discovery.
View Publication