S. Song et al. (aug 2014)
Cancer research 74 15 4170--82
Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties.
Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however,the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely,shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1,verteporfin,significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties,suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.
View Publication
产品类型:
产品号#:
产品名:
S. Wang et al. ( 2020)
Scientific reports 10 1 12226
Label-free detection of rare circulating tumor cells by image analysis and machine learning.
Detection and characterization of rare circulating tumor cells (CTCs) in patients' blood is important for the diagnosis and monitoring of cancer. The traditional way of counting CTCs via fluorescent images requires a series of tedious experimental procedures and often impacts the viability of cells. Here we present a method for label-free detection of CTCs from patient blood samples,by taking advantage of data analysis of bright field microscopy images. The approach uses the convolutional neural network,a powerful image classification and machine learning algorithm to perform label-free classification of cells detected in microscopic images of patient blood samples containing white blood cells and CTCs. It requires minimal data pre-processing and has an easy experimental setup. Through our experiments,we show that our method can achieve high accuracy on the identification of rare CTCs without the need for advanced devices or expert users,thus providing a faster and simpler way for counting and identifying CTCs. With more data becoming available in the future,the machine learning model can be further improved and can serve as an accurate and easy-to-use tool for CTC analysis.
View Publication
产品类型:
产品号#:
19657
产品名:
EasySep™ Direct 人CTC富集试剂盒
Lee J et al. ( 2012)
Angewandte Chemie (International ed. in English) 51 50 12509--12513
A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells.
Booster of pluripotency: RSC133,a new synthetic derivative of indoleacrylic acid/indolepropionic acid,exhibits dual activity by inhibiting histone deacetylase and DNA methyltransferase. Furthermore it potently improves the reprogramming of human somatic cells into a pluripotent state and aids the growth and maintenance of human pluripotent stem cells (hPSCs).
View Publication
Davies BR et al. ( 2007)
Molecular cancer therapeutics 6 8 2209--2219
AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical
Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/2,making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent,selective,and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205,Calu-6,and SW-620 xenografts,whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3,a marker of apoptosis,was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation,but the response varies between different xenografts. Moreover,enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel.
View Publication
Ware CB et al. (APR 2009)
Cell stem cell 4 4 359--69
Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells.
Recent evidence indicates that mouse and human embryonic stem cells (ESCs) are fixed at different developmental stages,with the former positioned earlier. We show that a narrow concentration of the naturally occurring short-chain fatty acid,sodium butyrate,supports the extensive self-renewal of mouse and human ESCs,while promoting their convergence toward an intermediate stem cell state. In response to butyrate,human ESCs regress to an earlier developmental stage characterized by a gene expression profile resembling that of mouse ESCs,preventing precocious Xist expression while retaining the ability to form complex teratomas in vivo. Other histone deacetylase inhibitors (HDACi) also support human ESC self-renewal. Our results indicate that HDACi can promote ESC self-renewal across species,and demonstrate that ESCs can toggle between alternative states in response to environmental factors.
View Publication
产品类型:
产品号#:
72242
产品名:
丁酸钠(Sodium Butyrate)
Bueno C et al. (SEP 2009)
Carcinogenesis 30 9 1628--37
Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells.
MLL rearrangements are hallmark genetic abnormalities in infant leukemia known to arise in utero. They can be induced during human prenatal development upon exposure to etoposide. We also hypothesize that chronic exposure to etoposide might render cells more susceptible to other genomic insults. Here,for the first time,human embryonic stem cells (hESCs) were used as a model to test the effects of etoposide on human early embryonic development. We addressed whether: (i) low doses of etoposide promote MLL rearrangements in hESCs and hESCs-derived hematopoietic cells; (ii) MLL rearrangements are sufficient to confer hESCs with a selective growth advantage and (iii) continuous exposure to low doses of etoposide induces hESCs to acquire other chromosomal abnormalities. In contrast to cord blood-derived CD34(+) and hESC-derived hematopoietic cells,exposure of undifferentiated hESCs to a single low dose of etoposide induced a pronounced cell death. Etoposide induced MLL rearrangements in hESCs and their hematopoietic derivatives. After long-term culture,the proportion of hESCs harboring MLL rearrangements diminished and neither cell cycle variations nor genomic abnormalities were observed in the etoposide-treated hESCs,suggesting that MLL rearrangements are insufficient to confer hESCs with a selective proliferation/survival advantage. However,continuous exposure to etoposide induced MLL breaks and primed hESCs to acquire other major karyotypic abnormalities. These data show that chronic exposure of developmentally early stem cells to etoposide induces MLL rearrangements and make hESCs more prone to acquire other chromosomal abnormalities than postnatal CD34(+) cells,linking embryonic genotoxic exposure to genomic instability.
View Publication
产品类型:
产品号#:
07800
07850
09600
09650
84434
84444
产品名:
氯化铵溶液
氯化铵溶液
StemSpan™ SFEM
StemSpan™ SFEM
Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Vaziri H et al. (MAY 2010)
Regenerative medicine 5 3 345--363
Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming.
AIM: To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS: An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2,OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length,telomerase activity and telomere-related gene expression. In addition,we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS: We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However,iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background,we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells,had telomerase activity,expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However,the clone EH3,with relatively high levels of telomerase activity,progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION: Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However,the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Male V et al. (OCT 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 7 3913--8
Immature NK cells, capable of producing IL-22, are present in human uterine mucosa.
NK cells are the dominant population of immune cells in the endometrium in the secretory phase of the menstrual cycle and in the decidua in early pregnancy. The possibility that this is a site of NK cell development is of particular interest because of the cyclical death and regeneration of the NK population during the menstrual cycle. To investigate this,we searched for NK developmental stages 1-4,based on expression of CD34,CD117,and CD94. In this study,we report that a heterogeneous population of stage 3 NK precursor (CD34(-)CD117(+)CD94(-)) and mature stage 4 NK (CD34(-)CD117(-/+)CD94(+)) cells,but not multipotent stages 1 and 2 (CD34(+)),are present in the uterine mucosa. Cells within the uterine stage 3 population are able to give rise to mature stage 4-like cells in vitro but also produce IL-22 and express RORC and LTA. We also found stage 3 cells with NK progenitor potential in peripheral blood. We propose that stage 3 cells are recruited from the blood to the uterus and mature in the uterine microenvironment to become distinctive uterine NK cells. IL-22 producers in this population might have a physiological role in this specialist mucosa dedicated to reproduction.
View Publication